【題目】如圖①,在矩形中, , 是的中點(diǎn),將三角形沿翻折到圖②的位置,使得平面平面.
(Ⅰ)在線段上確定點(diǎn),使得平面,并證明;
(Ⅱ)求與所在平面構(gòu)成的銳二面角的正切值.
【答案】(1)點(diǎn)是線段中點(diǎn)時, 平面,證明見解析;(2).
【解析】試題分析:(Ⅰ) , 的延長線交于點(diǎn),由已知可得點(diǎn)是的中點(diǎn),取BD的中點(diǎn),由三角形的中位線可得,可證;(2)由條件可得,進(jìn)而可得 平面.在平面內(nèi)作 ,由線面垂直的性質(zhì)可得 .所以就是與所在平面構(gòu)成的銳二面角的平面角.求角即可。
試題解析:(Ⅰ)點(diǎn)是線段中點(diǎn)時, 平面.
證明:記, 的延長線交于點(diǎn),因?yàn)?/span>,所以點(diǎn)是的中點(diǎn),
所以.
而在平面內(nèi), 在平面外,
所以平面.
(Ⅱ)在矩形中, , ,
因?yàn)槠矫?/span> 平面,且交線是,
所以 平面.
在平面內(nèi)作 ,連接,
則 .
所以就是與所在平面構(gòu)成的銳
二面角的平面角.
因?yàn)?/span>, ,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn),且.
(1)求二面角的大;
(2)在側(cè)棱SC上是否存在一點(diǎn)E,使得平面?若存在,求 的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極大值,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過, 兩點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)若直線過點(diǎn)且被圓截得的線段長為,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測試后,一位老師從本班48同學(xué)中隨機(jī)抽取6位同學(xué),他們的語文、歷史成績?nèi)缦卤恚?/span>
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 |
語文成績 | 60 | 70 | 74 | 90 | 94 | 110 |
歷史成績 | 58 | 63 | 75 | 79 | 81 | 88 |
(1)若規(guī)定語文成績不低于90分為優(yōu)秀,歷史成績不低于80分為優(yōu)秀,以頻率作概率,分別估計(jì)該班語文、歷史成績優(yōu)秀的人數(shù);
(2)用上表數(shù)據(jù)畫出散點(diǎn)圖易發(fā)現(xiàn)歷史成績與語文成績具有較強(qiáng)的線性相關(guān)關(guān)系,求與的線性回歸方程(系數(shù)精確到0.1).
參考公式:回歸直線方程是,其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,分別根據(jù)下列條件解三角形,其中有兩個解的是( )
A.a=8b=16A=30°
B.a=25b=30A=150°
C.a=30b=40A=30°
D.a=72b=60A=135°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)過點(diǎn)且斜率為的直線交曲線于, 兩點(diǎn),若,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點(diǎn).橢圓的長軸長是4,橢圓短軸長是1,點(diǎn)分別是橢圓的左焦點(diǎn)與右焦點(diǎn).
(1)求橢圓的方程;
(2)過的直線交橢圓于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別為棱AB、AD的中點(diǎn).
(1)求證:EF平行平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
(3)求直線A1C與平面ABCD所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com