【題目】已知F為拋物線的焦點,過F的動直線交拋物線C于A,B兩點.當(dāng)直線與x軸垂直時,.
(1)求拋物線C的方程;
(2)若直線AB與拋物線的準(zhǔn)線l相交于點M,在拋物線C上是否存在點P,使得直線PA,PM,PB的斜率成等差數(shù)列?若存在,求出點P的坐標(biāo);若不存在,說明理由.
【答案】(1)(2)存在;
【解析】
(1)求出拋物線的焦點坐標(biāo),根據(jù)題意,令,求出縱坐標(biāo)的值,再根據(jù)進(jìn)行求解即可;
(2)設(shè)直線的方程,與拋物線方程聯(lián)立,求出直線PA,PM,PB的斜率表達(dá)式,結(jié)合等差數(shù)列和一元二次方程根與系數(shù)關(guān)系,得到一個等式,根據(jù)等式成立進(jìn)行求解即可.
解:(1)因為,在拋物線方程中,令,可得,
所以當(dāng)直線與軸垂直時,解得,
拋物線的方程為.
(2)不妨設(shè)直線的方程為,
因為拋物線的準(zhǔn)線方程為,所以.
聯(lián)立消去,得,
設(shè),,則,,
若存在定點滿足條件,則,
即,
因為點均在拋物線上,所以.
代入化簡可得,
將,代入整理可得
,即,
因為上式對恒成立,所以,解得,
將代入拋物線方程,可得,
于是點即為滿足題意的定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某機械零件的幾何結(jié)構(gòu),該幾何體是由兩個相同的直四棱柱組合而成的,且前后,左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側(cè)棱互相垂直.則這個幾何體的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ(a≠0).
(1)求圓C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)直線l截圓C的弦長是半徑長的倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師給出一個函數(shù),甲、乙、丙、丁四個同學(xué)各說出了這個函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對稱;。不是函數(shù)的最小值.老師說:你們四個同學(xué)中恰好有三個人說的正確.那么,你認(rèn)為____說的是錯誤的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.
某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某省的高考改革方案,考生應(yīng)在3門理科學(xué)科(物理、化學(xué)、生物)和3門文科學(xué)科(歷史、政治、地理)的6門學(xué)科中選擇3門學(xué)科參加考試.根據(jù)以往統(tǒng)計資料,1位同學(xué)選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門學(xué)科是相互獨立的.
(1)求1位考生至少選擇生物、物理兩門學(xué)科中的1門的概率;
(2)某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時選擇生物、物理兩門學(xué)科的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com