16.下列命題正確的是(  )
A.方程$\frac{x}{y-2}=1$表示斜率為1,在y軸上的截距是2的直線
B.△ABC的頂點坐標(biāo)分別為A(0,3),B(-2,0),C(2,0),則中線AO的方程是x=0
C.到x軸距離為5的點的軌跡方程是y=5
D.曲線2x2-3y2-2x+m=0通過原點的充要條件是m=0

分析 對四個選項,分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對于A,方程$\frac{x}{y-2}=1$表示斜率為1,在y軸上的截距是2的直線,除去(0,2),不正確;
對于B,△ABC的頂點坐標(biāo)分別為A(0,3),B(-2,0),C(2,0),則中線AO的方程是x=0(0≤y≤3),不正確;
對于C,到x軸距離為5的點的軌跡方程是y=±5,不正確;
對于D,曲線2x2-3y2-2x+m=0通過原點的充要條件是m=0,正確.
故選:D.

點評 本題考查命題的真假判斷,考查學(xué)生分析解決問題的能力,綜合性強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$且|$\overrightarrow{AD}$-$\overrightarrow{AB}$|=|$\overrightarrow{AD}$+$\overrightarrow{AB}$|,則ABCD為( 。
A.平行四邊形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=2x和g(x)=x3,在同一坐標(biāo)系下作出它們的圖象,結(jié)合圖象比較f(8),g(8),f(2013),g(2013)的大小為f(8)<g(8),f(2013)>g(2013).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)y=f(x)與y=g(x)的圖象如圖所示,則函數(shù)y=f(x)•g(x)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)y=$\sqrt{\frac{2-x}{2+x}}$+lg(-x2+4x-3)的定義域為M.
(1)求M;
(2)當(dāng)x∈M使,求函數(shù)f(x)=4x-a•2x+2(a>1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.偶函數(shù)f(x)的定義域為R,且在(-∞,0)上是減函數(shù),且f(-1)=M與f(a2-a+$\frac{5}{4}$)=N(a∈R)的大。ā 。
A.M≤NB.M≥NC.M<ND.M>N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線y=x2,O為頂點,A,B為拋物線上的兩動點,且滿足OA⊥OB,如果OM⊥AB于M點,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.比較兩個數(shù)值的大小:
(1)1.72.5<1.73;
(2)log0.51.8>log0.52.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)拋物線C:y2=4x,過定點(m,0)的直線l與拋物線C交于A、B兩點,連結(jié)A及拋物線頂點O的直線與準(zhǔn)線交于點B′,直線BO與準(zhǔn)線交于點A′,且AA′與BB′均平行于x軸.
(1)求m的值;
(2)求四邊形ABB′A′面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案