A. | f(x)是奇函數(shù)且在(-$\frac{π}{6}$,$\frac{π}{6}$)上遞增 | B. | f(x)是奇函數(shù)且在(-$\frac{π}{6}$,$\frac{π}{6}$)上遞減 | ||
C. | f(x)是偶函數(shù)且在(0,$\frac{π}{6}$)上遞增 | D. | f(x)是偶函數(shù)且在(0,$\frac{π}{6}$)上遞減 |
分析 利用誘導(dǎo)公式化簡函數(shù)的解析式,通過函數(shù)的單調(diào)性與奇偶性判斷結(jié)果即可.
解答 解:函數(shù)f(x)=x3cos3(x+$\frac{π}{6}$)=x3cos(3x+$\frac{π}{2}$)=-x3sin3x,
由于f(-x)=-x3sin3x=f(x),可知此函數(shù)是偶函數(shù),又y=x3與y=sin3x在($0,\frac{π}{6}$)上遞增,可得f(x)=-x3sin3x在($0,\frac{π}{6}$)上遞減,對照四個選項(xiàng),D正確,
故選:D.
點(diǎn)評 本題考查函數(shù)的奇偶性以及函數(shù)的單調(diào)性,誘導(dǎo)公式的應(yīng)用,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | -1 | 0 | 2 |
P | $\frac{sinα}{4}$ | $\frac{sinα}{4}$ | cosα |
A. | $2cosα-\frac{1}{4}sinα$ | B. | $cosα+\frac{1}{2}sinα$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B=R | B. | A∩B=∅ | C. | A?B | D. | A⊆B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3π}{2}+\sqrt{3}$ | B. | $\frac{{2π+\sqrt{3}}}{3}$ | C. | $\frac{π}{6}+\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$+π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com