10.若函數(shù)$f(x)=2sin(ωx+\frac{π}{3}),x∈R$,又f(m)=-2,f(n)=0,且|m-n|的最小值為$\frac{3π}{4}$,則正數(shù)ω的值是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{1}{3}$D.$\frac{3}{2}$

分析 由條件利用正弦函數(shù)的周期性,根據(jù)正弦函數(shù)的圖象特征,求得正數(shù)ω的值.

解答 解:函數(shù)$f(x)=2sin(ωx+\frac{π}{3}),x∈R$,又f(m)=-2,f(n)=0,
故|m-n|的最小值為 $\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{3π}{4}$,則正數(shù)ω=$\frac{2}{3}$,
故選:A.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性,正弦函數(shù)的圖象特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC的邊BC上一動(dòng)點(diǎn)D滿足$\overrightarrow{CD}$=n$\overrightarrow{DB}$(n∈N*),$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則數(shù)列{(n+1)x}的前n項(xiàng)和為(  )
A.$\frac{1}{n+1}$B.$\frac{n}{n+1}$C.$\frac{1}{2}n(n+1)$D.$\frac{1}{2}(n+1)(n+2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某班有50人,從中選10人均分2組(即每組5人),一組打掃教室,一組打掃操場,那么不同的選派法有( 。
A.$C_{50}^{10}•C_{10}^5$B.$\frac{{C_{50}^{10}•C_{10}^5}}{2}$
C.$C_{50}^{10}•C_{10}^5•A_2^2$D.$C_{50}^5•C_{45}^5•A_2^2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等差數(shù)列{an}中,若S9=18,an-4=30(n>9),且Sn=240,則n=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知關(guān)于x的不等式kx2-(1+k)x+1<0(其中k∈R).
(1)若k=-3,解上述不等式;
(2)若k>0,求解上述不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x-1)=x2+1,則f(x)的表達(dá)式為( 。
A.f(x)=x2+1B.f(x)=(x+1)2+1C.f(x)=(x-1)2+1D.f(x)=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=ax-2-2的圖象恒過點(diǎn)P,且對(duì)數(shù)函數(shù)y=g(x)的圖象過點(diǎn)P,則g(x)=log${\;}_{\frac{1}{2}}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,Sn=an+1+2n+1+1(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{1,n=1}\\{-n•{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)={e^x}-\frac{a}{e^x}$.
(1)當(dāng)a=1時(shí),求函數(shù)F(x)=x[f(x)-f′(x)]的最小值;
(2)若g(x)=|f(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案