2.已知函數(shù)$f(x)={e^x}-\frac{a}{e^x}$.
(1)當(dāng)a=1時(shí),求函數(shù)F(x)=x[f(x)-f′(x)]的最小值;
(2)若g(x)=|f(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

分析 (1)當(dāng)a=1時(shí),求出F(x)=x[f(x)-f′(x)],求出函數(shù)的導(dǎo)數(shù),然后求解最小值.
(2)通過(guò)當(dāng)a≤0時(shí),推出a≥[-e2x]max,當(dāng)a>0時(shí),推出a≤[e2x]min,然后求出a的范圍.

解答 解:(1)當(dāng)a=1時(shí),函數(shù)$f(x)={e^x}-\frac{a}{e^x}$=${e}^{x}-\frac{1}{{e}^{x}}$.
F(x)=x[f(x)-f′(x)],F(xiàn)(x)=$-\frac{2x}{{e}^{x}}$.
F′(x)=$\frac{2(x-1)}{{e}^{x}}$=0,可得x=1.
由表得:當(dāng)x=1時(shí),
F(x)最小值為:-$\frac{2}{e}$.┉┉┉(5分)
(2)當(dāng)a≤0時(shí),f(x)=${e}^{x}-\frac{a}{{e}^{x}}$>0,g(x)=f(x),
若在[0,1]上單調(diào)遞增,則f′(x)≥0恒成立,即:a≥[-e2x]max
a≥-1,
∴-1≤a≤0,┉┉┉(8分)
當(dāng)a>0時(shí),f′(x)=${e}^{x}+\frac{a}{{e}^{x}}$>0,f(x)=${e}^{x}-\frac{a}{{e}^{x}}$在[0,1]上是單調(diào)增的
又g(x)=|f(x)|在[0,1]上單調(diào)遞增,所以f(x)≥0在[0,1]上恒成立.a(chǎn)≤[e2x]min,0<a≤1.
綜上:-1≤a≤1┉┉┉(12分)

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值,最小值,分類(lèi)討論思想的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若函數(shù)$f(x)=2sin(ωx+\frac{π}{3}),x∈R$,又f(m)=-2,f(n)=0,且|m-n|的最小值為$\frac{3π}{4}$,則正數(shù)ω的值是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{1}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的圖象,其五點(diǎn)如下表:
x $\frac{π}{2}$ 2π $\frac{7π}{2}$ 5π $\frac{13π}{2}$
 y-2 0
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=Acos(ωx+φ),若關(guān)于x的方程g(x)+λ=0在[π,7π]內(nèi)恰有兩個(gè)不同的解α,β,求實(shí)數(shù)λ的取值范圍,并求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一個(gè)三棱錐三視圖如圖所示,則該三棱錐的外接球的表面積為( 。
A.25πB.$\frac{29π}{4}$C.116πD.29π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知奇函數(shù)f(x)=$\frac{a•{2}^{x}-2+a}{{2}^{x}+1}$.
(1)求a的值;
(2)求函數(shù)f(x)的值域;
(3)若對(duì)任意t∈(-1,0],不等式f(t2-mt+7)+f(t2+5t-m)>0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖4,四邊形ABCD為菱形,∠ABC=60°.PA⊥平面ABCD,E為PC中點(diǎn).
(Ⅰ)求證:平面BED⊥平面ABCD;
(Ⅱ)求平面PBA與平面EBD所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,過(guò)點(diǎn)P作圓O的割線(xiàn)PBA與切線(xiàn)PE,E為切點(diǎn),連接AE,BE,∠APE的平分線(xiàn)與AE,BE分別交于點(diǎn)C,D.
(1)求證:$\frac{DB}{DE}$=$\frac{PD}{PC}$;
(2)若∠PCE=2∠AEB,求∠PDB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.角-420°終邊上有一異于原點(diǎn)的點(diǎn)(4,-a),則a的值是(  )
A.4$\sqrt{3}$B.-4$\sqrt{3}$C.±4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.當(dāng)x>1時(shí),關(guān)于函數(shù)f(x)=x+$\frac{1}{x-1}$,下列敘述正確的是( 。
A.函數(shù)f(x)有最小值2B.函數(shù)f(x)有最大值2C.函數(shù)f(x)有最小值3D.函數(shù)f(x)有最大值3

查看答案和解析>>

同步練習(xí)冊(cè)答案