分析 利用誘導(dǎo)公式先求出f(x)=$\frac{(2co{s}^{2}α+1)(cosα-1)}{2+co{s}^{2}α+cosα}$,再把cos$\frac{π}{3}$=$\frac{1}{2}$代入,能求出結(jié)果.
解答 解:∵$f(x)=\frac{{2{{cos}^3}x+2{{sin}^2}(2π-x)+sin(\frac{π}{2}+x)-3}}{{2+2{{sin}^2}(\frac{π}{2}+x)-sin(\frac{3π}{2}-x)}}$
=$\frac{2co{s}^{3}x+2si{n}^{2}x+cosx-3}{2+2co{s}^{2}x+cosx}$
=$\frac{2co{s}^{3}x-2co{s}^{2}x+cosx-1}{2+2co{s}^{2}x+cosx}$
=$\frac{(2co{s}^{2}α+1)(cosα-1)}{2+co{s}^{2}α+cosα}$,
∵cos$\frac{π}{3}$=$\frac{1}{2}$,
∴$f(\frac{π}{3})$=$\frac{(2×\frac{1}{4}+1)(\frac{1}{2}-1)}{2+\frac{1}{4}+\frac{1}{2}}$=$-\frac{1}{4}$.
故答案為:-$\frac{1}{4}$.
點(diǎn)評(píng) 本題考查三角函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意誘導(dǎo)公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $π,3+\frac{{\sqrt{2}}}{2}$ | B. | $\frac{π}{2},3+\frac{{\sqrt{2}}}{2}$ | C. | $π,\frac{7}{2}$ | D. | $\frac{π}{2},3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | -$\frac{10}{3}$ | C. | -$\frac{20}{3}$ | D. | $\frac{20}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9種 | B. | 5種 | C. | 23種 | D. | 15種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,則ac2>bc2 | B. | 若a>b,則a2>b2 | ||
C. | 若a<b<0,則a2<ab<b2 | D. | 若a<b<0,則$\frac{a}$>$\frac{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com