2.已知sinα=-$\frac{\sqrt{5}}{5}$,tanβ=-$\frac{1}{3}$,且α,β∈(-$\frac{π}{2}$,0).
(1)求α+β的值;
(2)求$\sqrt{2}$sin($\frac{π}{4}$-α)+cos($\frac{π}{4}$+β)的值.

分析 (1)利用同角三角函數(shù)基本關(guān)系式可得cosα,sinβ,cosβ.再利用“和差公式”即可得出.
(2)利用“和差公式”即可得出.

解答 解:(1)∵α∈(-$\frac{π}{2}$,0),∴$cosα=\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{5}}{5}$.
∵β∈(-$\frac{π}{2}$,0),tanβ=-$\frac{1}{3}$=$\frac{sinβ}{cosβ}$,又sin2β+cos2β=1.解得sinβ=$-\frac{\sqrt{10}}{10}$,cosβ=$\frac{3\sqrt{10}}{10}$.
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{2\sqrt{5}}{5}×\frac{3\sqrt{10}}{10}$-$(-\frac{\sqrt{5}}{5})$×$(-\frac{\sqrt{10}}{10})$=$\frac{\sqrt{10}}{10}$,
∴α+β=-$arccos\frac{\sqrt{10}}{10}$.
(2)$\sqrt{2}$sin($\frac{π}{4}$-α)+cos($\frac{π}{4}$+β)
=$\sqrt{2}(\frac{\sqrt{2}}{2}cosα-\frac{\sqrt{2}}{2}sinα)$+$\frac{\sqrt{2}}{2}cosβ$-$\frac{\sqrt{2}}{2}sinβ$
=cosα-sinα+$\frac{\sqrt{2}}{2}(cosβ-sinβ)$
=$\frac{2\sqrt{5}}{5}-(-\frac{\sqrt{5}}{5})$+$\frac{\sqrt{2}}{2}×\frac{2\sqrt{10}}{5}$
=$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了同角三角函數(shù)基本關(guān)系式、“和差公式”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),若|AB|=$\frac{25}{12}$,且|AF|<|BF|,則|AF|=( 。
A.$\frac{3}{4}$B.$\frac{5}{6}$C.$\frac{5}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b2=a2+bc,A=$\frac{π}{6}$,則內(nèi)角C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=ax3+bx2+c的圖象經(jīng)過(guò)點(diǎn)(0,1),且在x=1處的切線方程y=x-2.
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在樣本的頻率分布直方圖中,共有n個(gè)小矩形,若中間一個(gè)小矩形的面積等于其余(n-1)個(gè)矩形面積的$\frac{1}{5}$,且頻數(shù)為50,則樣本容量為( 。
A.500B.300C.480D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<π,x∈R)的最大值為2,且其圖象經(jīng)過(guò)點(diǎn)M($\frac{π}{3}$,$\sqrt{3}$).
(1)求f(x)的解析式;
(2)若f(x)≤-1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某廠有一批長(zhǎng)為18m的條形鋼板,可以割成1.8m和1.5m長(zhǎng)的零件,它們的加工費(fèi)分別為每個(gè)1元和0.6元,售價(jià)分別為20元和15元,總加工費(fèi)要求不超過(guò)8元,問(wèn)如何下料能獲得最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\sqrt{4x-3}$+x,則它的最小值是( 。
A.0B.1C.$\frac{3}{4}$D.無(wú)最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案