分析 通過a1=1、$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$可知數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項、以$\frac{1}{2}$為公差的等差數(shù)列,進而計算可得結論.
解答 解:∵a1=1,
∴$\frac{1}{{a}_{1}}$=1,
又∵$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項、以$\frac{1}{2}$為公差的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$.
點評 本題考查數(shù)列的通項,注意解題方法的積累,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | -$\sqrt{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3(C${\;}_{4}^{1}$C${\;}_{4}^{3}$+C${\;}_{4}^{2}$C${\;}_{4}^{2}$)對 | B. | 3(C${\;}_{8}^{4}$-12)對 | ||
C. | 3(C${\;}_{8}^{4}$-6)對 | D. | 3C${\;}_{8}^{4}$對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com