分析 由題意可得a=r,點D在圓內(nèi),當AB⊥C1D時,直線AB被圓截得的弦長最短,由弦長公式計算即可得到r=2,再將D的坐標代入橢圓方程,即可求得b,進而得到圓和橢圓的方程.
解答 解:由題意可得a=r,點D在圓內(nèi),
當AB⊥C1D時,直線AB被圓截得的弦長最短,
且為2$\sqrt{{r}^{2}-{C}_{1}{D}^{2}}$=2$\sqrt{{r}^{2}-(1+\frac{9}{4})}$=$\sqrt{3}$,
解得r=2,即a=2,
點D代入橢圓方程,有$\frac{1}{4}$+$\frac{9}{4^{2}}$=1,
解得b=$\sqrt{3}$,
則有圓C1的方程為x2+y2=4,橢圓C2的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
點評 本題考查直線和圓、橢圓的位置關(guān)系,同時考查直線被圓、橢圓截得弦長的問題,運用圓的垂徑定理和弦長公式是解題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1,2} | C. | {-1,0,1,2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com