(1)已知a,b∈R,求證:a2+b2≥ab+a+b-1.
(2)已知|a|<1,|b|<1,求證:|1-ab|>|a-b|.
考點(diǎn):不等式的證明
專題:證明題,不等式的解法及應(yīng)用
分析:(1)欲證明a2+b2≥ab+a+b-1,利用比較法,只須證明。╝2+b2)-(ab+a+b-1)>0即可,故先作差后因式分解后與0比較即可;
(2)首先化簡(jiǎn)|1-ab|2-|a-b|2可得,|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1);結(jié)合題意中|a|<1,|b|<1,可得a、b的范圍,進(jìn)而可得|1-ab|2-|a-b|2>0,由不等式的性質(zhì),可得答案.
解答: 證明:(1)(a2+b2)-(ab+a+b-1)
=
1
2
(2a2+2b2-2ab-2a-2b+2)
=
1
2
[(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)]
=
1
2
[(a-b)2+(a-1)2+(b-1)2]≥0,
則a2+b2≥ab+a+b-1;
(2)|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1).
由于|a|<1,|b|<1,則a2-1<0,b2-1<0.
則|1-ab|2-|a-b|2>0,
故有|1-ab|>|a-b|.
點(diǎn)評(píng):本題考查不等式的證明,考查比較法的運(yùn)用以及不等式性質(zhì)的基本運(yùn)用,注意結(jié)合題意,進(jìn)行絕對(duì)值的轉(zhuǎn)化,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在一座底部不可到達(dá)的孤山兩側(cè),有兩段平行的公路AB和CD,現(xiàn)測(cè)得AB=5,AC=9∠BCA=30°,∠ADB=45°
(1)求sin∠ABC
(2)求BD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
1
2
x2
+bx+1在[-1,+∞)上是減函數(shù),則b的取值范圍是( 。
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
a
+
1
x
(a>0,x>0),則f(x)在[
1
2
,2]上的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3
x3+x函數(shù),則不等式f(2-x2)+f(2x+1)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=nan-2n(n-1).
(Ⅰ)求a2,a3,a4,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,求證:Tn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)函數(shù)中,在(0,+∞)上為增函數(shù)的是(  )
A、f(x)=3-x
B、f(x)=x2-3x
C、f(x)=2x
D、f(x)=
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
11-2
30
+
7-2
10
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A′B′C′D′的棱線長(zhǎng)為1,線段AC′上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=
2
2
,則下列結(jié)論中正確的是(  )
①直線AA′與CF是異面直線
②三棱錐B′BEF體積為定值
③異面直線DD′與BE所成角的余弦值范圍是[
2
2
,
6
3
]

④BD⊥EF.
A、①②④B、②④
C、②③D、②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案