11.定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{(1-2a)x+\frac{1}{2},x∈(-∞,1]}\\{alo{g}_{a}x,x∈(1,+∞)}\end{array}\right.$(其中a>0,且a≠1),對(duì)于任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{3}{4}$,1)B.($\frac{1}{2}$,$\frac{3}{4}$]C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{1}{2}$,1)

分析 由題意可得f(x)在R上遞減.運(yùn)用一次函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,結(jié)合x=1的情況,解不等式即可得到所求范圍.

解答 解:任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
即為f(x)在R上遞減.
當(dāng)x∈(-∞,1]時(shí),f(x)=(1-2a)x+$\frac{1}{2}$遞減,
可得1-2a<0,解得a>$\frac{1}{2}$;
當(dāng)x∈(1,+∞)時(shí),f(x)=alogax遞減,
可得0<a<1;
由R上遞減,可得1-2a+$\frac{1}{2}$≥aloga1=0,
解得a≤$\frac{3}{4}$.
綜上可得,$\frac{1}{2}$<a≤$\frac{3}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查分段函數(shù)的單調(diào)性的判斷和運(yùn)用,考查單調(diào)性的定義的運(yùn)用,注意分界點(diǎn)的運(yùn)用,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)(n,an)(n∈N*)在y=ex的圖象上,若滿足Tn=lna1+lna2+…+lnan>k時(shí)n的最小值為5,則k的取值范圍是(  )
A.k<15B.k<10C.10≤k<15D.10<k<15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)m是實(shí)數(shù),函數(shù)$f(x)=m-\frac{3}{{{3^x}-1}}$.
(Ⅰ)求f(x)的定義域;
(Ⅱ)用定義證明:對(duì)于任意實(shí)數(shù)m,函數(shù)f(x)在(0,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若(x2+$\frac{a}{2x}$)6展開式的常數(shù)項(xiàng)是15,圖中陰影部分是由曲線y=x2和圓x2+y2=a及x軸圍成的封閉圖形,現(xiàn)向圓中投入一顆石子,則此石子恰好落在陰影部分的概率為(  )
A.$\frac{1}{8}$-$\frac{1}{12π}$B.$\frac{1}{8}$+$\frac{1}{12π}$C.$\frac{1}{8}$D.$\frac{1}{12π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個(gè)根所在的區(qū)間為(  )
x-10123
 ex-x-2-0.63-1-0.283.3915.09
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=sinx(x∈R),則下列四個(gè)說法:
①函數(shù)g(x)=$\frac{{f}^{2}(x)-f(x)}{f(x)-1}$是奇函數(shù);
②函數(shù)f(x)滿足:對(duì)任意x1,x2∈[0,π]且x1≠x2都有f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{1}{2}$[f(x1)+f(x2)];
③若關(guān)于x的不等式f2(x)-f(x)+a≤0在R上有解,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{4}$];
④若關(guān)于x的方程3-2cos2x=f(x)-a在[0,π]恰有4個(gè)不相等的解x1,x2,x3,x4;則實(shí)數(shù)a的取值范圍是[-1,-$\frac{7}{8}$),且x1+x2+x3+x4=2π;
其中說法正確的序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合M={x|x>1},集合N{x|-3<x<2},則M∪N=( 。
A.{x|-3<x<2}B.{x|-3<x<1}C.{x|1<x<2}D.{x|x>-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系中,已知A(-1,0),B(1,0),動(dòng)點(diǎn)P(x,y)滿足|PA|=a|PB(a>0
).
(1)試討論動(dòng)點(diǎn)P的軌跡C;
(2)當(dāng)a=$\sqrt{2}$時(shí),直線y=x+b與軌跡C交于兩點(diǎn)M,N,若以線段MN為直徑的圓恰好過坐標(biāo)原點(diǎn)O,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$,其中a為常數(shù).
(1)當(dāng)a=1時(shí),判斷函數(shù)f(x)的奇偶性并證明;
(2)判斷函數(shù)f(x)的單調(diào)性并證明;
(3)當(dāng)a=1時(shí),對(duì)于任意x∈[-2,2],不等式f(x2+m+6)+f(-2mx)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案