分析 (Ⅰ)求出函數(shù)的導數(shù),根據(jù)f′(2)=0,求出b的值即可;
(Ⅱ)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可.
解答 解:(Ⅰ)f′(x)=3x2-2bx+4,
∵f(x)在x=2處取得極值,
∴f′(2)=12-4b+4=0,
解得:b=4;
(Ⅱ)由(Ⅰ)得:f(x)=x3-4x2+4x,
f′(x)=(3x-2)(x-2),
令f′(x)>0,解得:x>2或x<$\frac{2}{3}$,
令f′(x)<0,解得:$\frac{2}{3}$<x<2,
∴f(x)在[0,$\frac{2}{3}$)遞增,在($\frac{2}{3}$,2)遞減,在(2,4]遞增,
而f(0)=0,f($\frac{2}{3}$)=$\frac{32}{27}$,f(2)=0,f(4)=16,
∴f(x)的最大值是16,最小值是0.
點評 本題考查了函數(shù)的單調(diào)性、最值、極值問題,考查導數(shù)的應用,是一道基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com