1.如圖,在△ABC中,點D在BC邊上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.
(1)求sin∠C的值;
(2)若BD=5,求△ABD的面積.

分析 (Ⅰ)由同角三角函數(shù)基本關(guān)系式可求sin∠ADB,由$∠C=∠ADB-\frac{π}{4}$.利用兩角差的正弦函數(shù)公式及特殊角的三角函數(shù)值即可求值得解.
(Ⅱ)先由正弦定理求AD的值,再利用三角形面積公式即可得解.

解答 (本小題滿分13分)
解:(Ⅰ)因為$cos∠ADB=-\frac{{\sqrt{2}}}{10}$,
所以$sin∠ADB=\frac{{7\sqrt{2}}}{10}$.
又因為$∠CAD=\frac{π}{4}$,
所以$∠C=∠ADB-\frac{π}{4}$.
所以$sin∠C=sin(∠ADB-\frac{π}{4})=sin∠ADB•cos\frac{π}{4}-cos∠ADB•sin\frac{π}{4}$
=$\frac{{7\sqrt{2}}}{10}•\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{10}•\frac{{\sqrt{2}}}{2}=\frac{4}{5}$. …(7分)
(Ⅱ)在△ACD中,由$\frac{AD}{sin∠C}=\frac{AC}{sin∠ADC}$,得$AD=\frac{AC•sin∠C}{sin∠ADC}=\frac{{\frac{7}{2}•\frac{4}{5}}}{{\frac{{7\sqrt{2}}}{10}}}=2\sqrt{2}$.
所以${S_{△ABD}}=\frac{1}{2}AD•BD•sin∠ADB=\frac{1}{2}•2\sqrt{2}•5•\frac{{7\sqrt{2}}}{10}=7$.…(13分)

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式及特殊角的三角函數(shù)值,正弦定理,三角形面積公式等知識的綜合應(yīng)用,考查了數(shù)形結(jié)合能力和轉(zhuǎn)化思想,考查了計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.在體積為V的平行六面體ABCD-A1B1C1D1中,P為其內(nèi)一動點(包括表面),若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,且x+y+z≤1,則點P所有的位置構(gòu)成的幾何體的體積是$\frac{1}{6}$V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在直三棱柱ABC-A1B1C1中,AC=AA1=2,∠ACB=90°,點E,F(xiàn)分別是棱AB,BB1的中點,當二面角C1-AA1-B為45°時,直線EF與BC1的夾角為( 。
A.60°B.45°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合M={x|-1<x<1},$N=\left\{{x|\frac{x}{x-1}≤0}\right\}$,則M∩N=(  )
A.{x|0≤x<1}B.{x|0<x<1}C.{x|x≥0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}x-y≤2\;,\;\;\\ 2x+y≥1\;,\;\;\\ y≤1\;,\;\;\end{array}\right.$則z=x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.計算:i(1-i)=1+i (i為虛數(shù)單位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)Sn為等差數(shù)列{an}的前n項和,若已知S6<S7,S7>S8,則下列敘述中正確的個數(shù)有( 。
①S7是所有Sn(n∈N*)中的最大值;
②a7是所有an(n∈N*)中的最大值;
③公差d一定小于0;
④S9一定小于S6
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若集合 A={x|-3<x<3},B={x|(x+4)(x-2)>0},則 A∩B=( 。
A.{x|-3<x<2}B.{x|2<x<3}C.{x|-3<x<-2}D.{x|x<-4或x>-3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知條件p:?m∈[-1,1]使不等式a2-5a+5≥m+2成立;條件q:x2+ax+2=0有兩個負數(shù)根,若p∨q為真,且p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案