13.各項(xiàng)均不相等的等差數(shù)列{an}前n項(xiàng)和為Sn,已知S5=40,且a1,a3,a7成等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (I)設(shè)等差數(shù)列{an}的公差為d≠0,由于S5=40,且a1,a3,a7成等比數(shù)列.課堂5a1+$\frac{5×4}{2}$d=40,${a}_{3}^{2}$=a1a7,即$({a}_{1}+2d)^{2}$=a1(a1+6d),聯(lián)立解出即可得出.
(II)bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$=$(-1)^{n}\frac{2n+3}{(2n+2)(2n+4)}$=(-1)n$\frac{1}{4}$$(\frac{1}{n+1}+\frac{1}{n+2})$,對(duì)n分類討論,利用“裂項(xiàng)求和”方法即可得出.

解答 解:(I)設(shè)等差數(shù)列{an}的公差為d≠0,∵S5=40,且a1,a3,a7成等比數(shù)列.
∴5a1+$\frac{5×4}{2}$d=40,${a}_{3}^{2}$=a1a7,即$({a}_{1}+2d)^{2}$=a1(a1+6d),
聯(lián)立解得a1=4,d=2.
∴an=4+2(n-1)=2n+2.
(II)bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$=$(-1)^{n}\frac{2n+3}{(2n+2)(2n+4)}$=(-1)n$\frac{1}{4}$$(\frac{1}{n+1}+\frac{1}{n+2})$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=T2k=$\frac{1}{4}$$[-(\frac{1}{2}+\frac{1}{3})+(\frac{1}{3}+\frac{1}{4})$-…+$(\frac{1}{n+1}+\frac{1}{n+2})]$=$\frac{1}{4}(\frac{1}{n+2}-\frac{1}{2})$=$\frac{-n}{8(n+2)}$.
Tn=T2k-1=T2k-$\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})$=$\frac{-(n+1)}{8(n+3)}$-$\frac{1}{4}(\frac{1}{n+2}+\frac{1}{n+3})$=-$\frac{n+4}{8(n+2)}$.
∴Tn=$\left\{\begin{array}{l}{\frac{-n}{8(n+2)},n=2k}\\{\frac{-(n+4)}{8(n+2)},n=2k-1}\end{array}\right.$(k∈N*).

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知直線l1:x+y-1=0,現(xiàn)將直線l1向上平移到直線l2的位置,若l2、l1和坐標(biāo)軸圍成的梯形面積為4,求l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2,bn=(-1)nSn
(1)求{an}通項(xiàng)公式
(2)求和T10=b1+b2+b3+…b10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.曲線y=$\sqrt{x}$和直線y=x圍成的圖形面積是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在直角坐標(biāo)系xOy中,點(diǎn)P(1,2)到拋物線E:y2=2px(p>0)的焦點(diǎn)的距離為$\sqrt{5}$,過拋物線E的焦點(diǎn)F作兩條相互垂直的直線分別交拋物線于A,B,C,D四點(diǎn).
(1)求拋物線C的方程;
(2)求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某單位有420名職工,現(xiàn)采用系統(tǒng)抽樣方法抽取21人做問卷調(diào)查,將420人按1,2,…,420隨機(jī)編號(hào),則抽取的21人中,編號(hào)落入?yún)^(qū)間[281,420]的人數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某班有學(xué)生48人,現(xiàn)用系統(tǒng)抽樣的方法,抽取一個(gè)容量為6的樣本,已知座位號(hào)分別為6,x,22,y,38,46的同學(xué)都在樣本中,則x+y=44.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的圖象與函數(shù)g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的圖象的對(duì)稱中心完全相同,則φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,PA⊥平面ABCD,四邊形ABCD為矩形,PA=AB=1,AD=2,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)求三棱錐E-PAD的體積;
(2)證明:無論點(diǎn)E在邊BC的何處,都有AF⊥PE.

查看答案和解析>>

同步練習(xí)冊答案