分析 (I)取CD的中點(diǎn)E,連接BE.可證四邊形ABED是矩形,故而AB⊥AD,結(jié)合AB⊥PD得出AB⊥平面PAD,又AB∥CD得出CD⊥平面PAD,于是平面PAD⊥平面PCD;
(II)以A為原點(diǎn)建立坐標(biāo)系,求出$\overrightarrow{PD}$和平面PBC的法向量$\overrightarrow{n}$,則直線PD與平面PBC所成的角的正弦值為|cos<$\overrightarrow{n}$,$\overrightarrow{PD}$>|.
解答 證明:(I)取CD的中點(diǎn)E,連接BE.
∵BC=BD,E為CD中點(diǎn),∴BE⊥CD,
又∵AB∥CD,AB=$\frac{1}{2}$CD=DE,
∴四邊形ABED是矩形,
∴AB⊥AD,
又AB⊥PA,PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴AB⊥平面PAD.
∵AB∥CD,
∴CD⊥平面BEF,又CD?平面PCD,
∴平面BEF⊥平面PCD.
∴平面PAD⊥平面PCD.
(II)以A為原點(diǎn),AB為x軸,AD為y軸,以平面ABCD過點(diǎn)A的垂線為z軸建立空間直角坐標(biāo)角系A(chǔ)-xyz,如圖所示:
∵PB=BD=$\sqrt{6}$,AB=$\sqrt{2}$,AB⊥PA,AB⊥AD,∴PA=AD=2.
∴P(0,-1,$\sqrt{3}$),D(0,2,0),B($\sqrt{2}$,0,0),C(2$\sqrt{2}$,2,0),
∴$\overrightarrow{PD}$=(0,3,-$\sqrt{3}$),$\overrightarrow{BP}$=(-$\sqrt{2}$,-1,$\sqrt{3}$),$\overrightarrow{BC}$=($\sqrt{2}$,2,0).
設(shè)平面PBC的法向量$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=0}\\{\overrightarrow{n}•\overrightarrow{BP}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\sqrt{2}x+2y=0}\\{-\sqrt{2}x-y+\sqrt{3}z=0}\end{array}\right.$,取x=$\sqrt{2}$,得$\overrightarrow{n}$=($\sqrt{2}$,-1,$\frac{\sqrt{3}}{3}$),
∴cos<$\overrightarrow{n}$,$\overrightarrow{PD}$>=$\frac{\overrightarrow{n}•\overrightarrow{PD}}{|\overrightarrow{n}||\overrightarrow{PD}|}$=$\frac{-4}{\sqrt{\frac{10}{3}}•2\sqrt{3}}$=-$\frac{\sqrt{10}}{5}$.
∴直線PD與平面PBC所成的角的正弦值為$\frac{\sqrt{10}}{5}$.
點(diǎn)評 本題考查了面面垂直的性質(zhì),空間向量的應(yīng)用與空間角的計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5x+y-8=0 | B. | 5x-y-2=0 | C. | 3x+y-6=0 | D. | 4x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {2} | C. | {0,2} | D. | {0,2,4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com