18.已知集合A={-2,0,2},B={x|x=|a+2|,a∈A},集合A∩B=( 。
A.{0}B.{2}C.{0,2}D.{0,2,4}

分析 把A中元素代入B中x=|a+2|計(jì)算確定出B,找出A與B的交集即可.

解答 解:∵A={-2,0,2},B={x|x=|a+2|,a∈A},
∴當(dāng)a=-2時(shí),x=|-2+2|=0,
當(dāng)a=0時(shí),x=|0+2|=2,
當(dāng)a=2時(shí),x=|2+2|=4,
∴B={0,2,4},
∴A∩B={0,2}.
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°.
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)求直線PD與平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(實(shí)驗(yàn)班題)已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<π.
(1)求sin(2α-$\frac{π}{6}$)的值;
(2)求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.隨機(jī)抽取某廠的某種產(chǎn)品400件,經(jīng)質(zhì)檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬元)為ξ.
(Ⅰ)求ξ的分布列;
(Ⅱ)求1件產(chǎn)品的平均利潤(rùn);
(Ⅲ)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.75萬元,則三等品率最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若拋物線C:x=2py2過點(diǎn)(2,5),則拋物線C的準(zhǔn)線方程為x=-$\frac{25}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)$\overrightarrow a$是已知的平面向量且$\overrightarrow a$≠$\overrightarrow{0}$,關(guān)于向量$\overrightarrow a$的分解,有如下四個(gè)命題:
①給定向量$\overrightarrow b$,總存在向量$\overrightarrow c$,使$\overrightarrow a$=$\overrightarrow b$+$\overrightarrow c$;
②給定向量$\overrightarrow b$和$\overrightarrow c$,總存在實(shí)數(shù)λ和μ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
③給定單位向量$\overrightarrow b$和正數(shù)μ,總存在單位向量$\overrightarrow c$和實(shí)數(shù)λ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
④給定正數(shù)λ和μ,總存在單位向量$\overrightarrow$和單位向量$\overrightarrow c$,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
上述命題中的向量$\overrightarrow b$,$\overrightarrow c$和$\overrightarrow a$在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=(x+sinx)(2x-a)是偶函數(shù),則實(shí)數(shù)a的值為(  )
A.±1B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD,AB=2BC=2.
(1)求證:D1E⊥底面ABCD;
(2)若平面BCC1B1與平面BED1的夾角為$\frac{π}{3}$,求線段D1E的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)Sn=1-2+3-4+…+n(-1)n-1,則S8=-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案