7.《九章算術(shù)》商功章有題:一圓柱形谷倉(cāng),高1丈3尺3$\frac{1}{3}$寸,容納米2000斛(1丈=10尺,l尺=10寸,斛為容積單位,l斛≈1.62立方尺,π≈3),則圓柱底圓周長(zhǎng)約為(  )
A.l丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

分析 根據(jù)圓柱的體積和高計(jì)算出圓柱的底面周長(zhǎng),從而求出圓周的底面周長(zhǎng).

解答 解:由題意得,圓柱形谷倉(cāng)底面半徑為r尺,谷倉(cāng)高h(yuǎn)=$\frac{40}{3}$尺.
于是谷倉(cāng)的體積V=$π{r}^{2}•\frac{40}{3}$=2000×1.62.
解得r≈9.
∴圓柱圓的周面周長(zhǎng)為2πr≈54尺.
故選B.

點(diǎn)評(píng) 本題考查了圓柱的體積計(jì)算,注意單位換算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為30°的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線離心率的取值范圍是(  )
A.($\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$)B.[$\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$]C.($\frac{\sqrt{3}}{3}$,+∞)D.[$\frac{2\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.若雙曲線以A、B為焦點(diǎn),且過(guò)C、D兩點(diǎn),則當(dāng)梯形ABCD的周長(zhǎng)最大時(shí),雙曲線的實(shí)軸長(zhǎng)為2$\sqrt{3}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正五棱錐底面邊長(zhǎng)為2,底面正五邊形中心到側(cè)面斜高距離為3,斜高長(zhǎng)為4,則此正五棱錐體積為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知雙曲線C:$\frac{{x}^{2}}{3}$-y2=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F2的直線與雙曲線C的右支相交于P、Q兩點(diǎn),且點(diǎn)P的橫坐標(biāo)為2,則△PF1Q的周長(zhǎng)為$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知矩陣A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,求矩陣A的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.一條漸近線方程為$y=\frac{1}{2}x$且過(guò)點(diǎn)(4,1)的雙曲線的方程為$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.sin1°,sin1,sinπ°的大小順序是( 。
A.sin1°<sin1<sinπ°B.sin1°<sinπ°<sin1
C.sinπ°<sin1°<sin1D.sin1<sin1°<sinπ°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對(duì)角線AC折起得三棱錐,點(diǎn)M是棱BC的中點(diǎn),DM=3$\sqrt{2}$.
(1)求證:平面ABC⊥平面MDO;
(2)求三棱錐M-ABD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案