9.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值,并分別寫(xiě)出相應(yīng)的x的值.

分析 (1)利用和角公式及降次公式對(duì)f(x)進(jìn)行化簡(jiǎn),得到f(x)=Asin(ωx+φ)形式,代入周期公式即可;
(2)由x的范圍求出ωx+φ的范圍,結(jié)合正弦函數(shù)單調(diào)性得出最值和相應(yīng)的x.

解答 解:(1)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=cosx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{2}$($\frac{1+cos2x}{2}$)+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x-1
=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)-1,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$],∴2x-$\frac{π}{3}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],
∴當(dāng)2x-$\frac{π}{3}$=$\frac{π}{6}$,即x=$\frac{π}{4}$時(shí),fmax(x)=$\frac{1}{2}×\frac{1}{2}-1$=-$\frac{3}{4}$;
當(dāng)2x-$\frac{π}{3}$=-$\frac{π}{2}$,即x=-$\frac{π}{12}$時(shí),fmin(x)=$\frac{1}{2}×(-1)-1$=-$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換及性質(zhì),對(duì)二次項(xiàng)進(jìn)行降次及和差公式運(yùn)用是常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,在三棱錐P-ABC中,D,E是PC上不重合的兩點(diǎn),F(xiàn),H分別是PA,PB上的點(diǎn),且與點(diǎn)P不重合,判斷EF和DH的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,ABCD是邊長(zhǎng)為2的正方形,ED⊥平面ABCD,ED=1,EF∥BD.
(1)設(shè)EF=λBD,是否存在實(shí)數(shù)λ,使BF∥平面ACE;
(2)求證:平面EAC⊥平面BDEF
(3)當(dāng)EF=$\frac{1}{2}$BD時(shí),求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正實(shí)數(shù)a,b滿足$\frac{asin\frac{π}{5}+bcos\frac{π}{5}}{acos\frac{π}{5}-bsin\frac{π}{5}}$=tan$\frac{8π}{15}$,則$\frac{a}$的值等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知點(diǎn)O為三棱錐P-ABC的頂點(diǎn)P在平面ABC內(nèi)的投影,若PA=PB=PC,則O為△ABC的外心;若PA⊥BC,PB⊥AC,則O為△ABC的垂心;若P到三邊AB,BC,CA的距離都想等且點(diǎn)O在△ABC的內(nèi)部,則O為△ABC的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.等差數(shù)列{an}的前n項(xiàng)和為Sn,若m>1,m∈N*,且${a_{m-1}}+{a_{m+1}}={a_m}^2\;,\;{S_{2m-1}}=58$,則m=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=21-x(x≥1)的值域?yàn)椋ā 。?table class="qanwser">A.[1,+∞)B.(-∞,1]C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)是定義在R上的奇函數(shù),且在[0,+∞)上單調(diào)遞增,則f(-3),f(-4)的大小關(guān)系是(  )
A.f (-3)>f (-4)B.f (-3)<f (-4)C.f (-3)=f (-4)D.無(wú)法比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)n是一個(gè)正整數(shù),定義n個(gè)實(shí)數(shù)a1,a2,…,an的算術(shù)平均值為$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$.設(shè)集合 M={1,2,3,…,2015},對(duì) M的任一非空子集 Z,令αz表示 Z中最大數(shù)與最小數(shù)之和,那么所有這樣的αz的算術(shù)平均值為2016.

查看答案和解析>>

同步練習(xí)冊(cè)答案