分析 (1)利用和角公式及降次公式對(duì)f(x)進(jìn)行化簡(jiǎn),得到f(x)=Asin(ωx+φ)形式,代入周期公式即可;
(2)由x的范圍求出ωx+φ的范圍,結(jié)合正弦函數(shù)單調(diào)性得出最值和相應(yīng)的x.
解答 解:(1)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=cosx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{2}$($\frac{1+cos2x}{2}$)+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x-1
=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)-1,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$],∴2x-$\frac{π}{3}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],
∴當(dāng)2x-$\frac{π}{3}$=$\frac{π}{6}$,即x=$\frac{π}{4}$時(shí),fmax(x)=$\frac{1}{2}×\frac{1}{2}-1$=-$\frac{3}{4}$;
當(dāng)2x-$\frac{π}{3}$=-$\frac{π}{2}$,即x=-$\frac{π}{12}$時(shí),fmin(x)=$\frac{1}{2}×(-1)-1$=-$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換及性質(zhì),對(duì)二次項(xiàng)進(jìn)行降次及和差公式運(yùn)用是常用方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f (-3)>f (-4) | B. | f (-3)<f (-4) | C. | f (-3)=f (-4) | D. | 無(wú)法比較 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com