【題目】某研究機構對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,所得數(shù)據(jù)如表所示:

x

6

8

10

12

y

2

3

5

6

畫出上表數(shù)據(jù)的散點圖如圖所示
(其中 , =

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程 = x+
(2)試根據(jù)(1)求出的線性回歸方程,預測記憶力為9的學生的判斷力

【答案】
(1)解:∵ = =9, = =4,

xiyi=6×2+8×3+10×5+12×6=158

= =0.7,

a=4﹣0.7×9=﹣2.3

故線性回歸方程為y=0.7x﹣2.3


(2)解:由回歸直線方程預測y=0.7×9﹣2.3=4,

記憶力為9的同學的判斷力約為4


【解析】(1)作出利用最小二乘法來求線性回歸方程的系數(shù)的量,求出橫標和縱標的平均數(shù),求出系數(shù),再求出a的值.得到回歸直線方程.(2)由回歸直線方程預測,記憶力為9的同學的判斷力約為4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC

(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若的圖像在處的切線與軸平行,求的極值;

(2)若函數(shù)內單調遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求函數(shù) 的極小值;

(2)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班50名學生在一次百米測試中,成績全部介于13秒與18秒之間,將測試結果按如下方式分成五組;第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.

(1)若成績大于或等于14秒且小于16秒認為良好,求該班在這次百米測試中成績良好的人數(shù);
(2)設m,n表示該班某兩位同學的百米測試成績,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學著作之一,書中有這樣一道題:把120個面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最少的那份有( )個面包.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓x2y24ax2ay20a200.

(1)求證:對任意實數(shù)a,該圓恒過一定點;

(2)若該圓與圓x2y24相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有4名學生參加演講比賽,有兩個題目可供選擇,組委會決定讓選手通過擲一枚質地均勻的骰子選擇演講的題目,規(guī)則如下:選手擲出能被3整除的數(shù)則選擇題目,擲出其他的數(shù)則選擇題目.

(1)求這4個人中恰好有1個人選擇題目的概率;

(2)用分別表示這4個人中選擇題目的人數(shù),記,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.

查看答案和解析>>

同步練習冊答案