A. | D1O∥平面A1BC1 | B. | D1O⊥平面AMC | ||
C. | 異面直線BC1與AC所成的角等于60° | D. | 點(diǎn)B到平面AMC的距離為$\frac{\sqrt{2}}{2}$ |
分析 由線面平行的判定證明A正確;由線面垂直的判定說明B正確;由異面直線所成角的概念結(jié)合正方體的面對角線相等說明C正確;設(shè)出正方體棱長,利用等積法求出B到平面AMC的距離,說明D錯誤.
解答 解:如圖,
連接B1D1,交A1C1于N,則可證明OD1∥BN,
由OD1?面A1BC1,BN?面A1BC1,可得D1O∥面A1BC1,A正確;
由三垂線定理的逆定理可得OD1⊥AC,
設(shè)正方體棱長為2,可求得OM2=3,$O{{D}_{1}}^{2}=6$,$M{{D}_{1}}^{2}=9$,
則$O{{D}_{1}}^{2}+O{M}^{2}={D}_{1}{M}^{2}$,有OD1⊥OM,由線面垂直的判定可得D1O⊥平面AMC,B正確;
由正方體的面對角線相等得到△A1BC1為正三角形,即∠A1C1B=60°,
∴異面直線BC1與AC所成的角等于60°,C正確;
設(shè)點(diǎn)B到平面AMC的距離為d,正方體的棱長為2a,則$AC=2\sqrt{2}a$,
$OM=\sqrt{3}a$,由VB-AMC=VA-BCM,得
$\frac{1}{3}×\frac{1}{2}AC×OM×d=\frac{1}{3}×\frac{1}{2}×BC×AB×BM$,
即$2\sqrt{2}a×\sqrt{3}a×d=4{a}^{3}$,解得:d=$\sqrt{6}a$,D錯誤.
故選:D.
點(diǎn)評 本題考查了空間直線和平面的位置關(guān)系,考查了異面直線所成角的求法,訓(xùn)練了利用等積法求點(diǎn)到面的距離,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | D1O∥平面A1BC1 | B. | D1O⊥平面AMC | ||
C. | 異面直線BC1與AC所成的角等于60° | D. | 二面角M-AC-B等于45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 4 | C. | 3$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com