13.如圖,正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,M為棱BB1的中點(diǎn),則下列結(jié)論中錯誤的是(  )
A.D1O∥平面A1BC1B.D1O⊥平面AMC
C.異面直線BC1與AC所成的角等于60°D.點(diǎn)B到平面AMC的距離為$\frac{\sqrt{2}}{2}$

分析 由線面平行的判定證明A正確;由線面垂直的判定說明B正確;由異面直線所成角的概念結(jié)合正方體的面對角線相等說明C正確;設(shè)出正方體棱長,利用等積法求出B到平面AMC的距離,說明D錯誤.

解答 解:如圖,
連接B1D1,交A1C1于N,則可證明OD1∥BN,
由OD1?面A1BC1,BN?面A1BC1,可得D1O∥面A1BC1,A正確;
由三垂線定理的逆定理可得OD1⊥AC,
設(shè)正方體棱長為2,可求得OM2=3,$O{{D}_{1}}^{2}=6$,$M{{D}_{1}}^{2}=9$,
則$O{{D}_{1}}^{2}+O{M}^{2}={D}_{1}{M}^{2}$,有OD1⊥OM,由線面垂直的判定可得D1O⊥平面AMC,B正確;
由正方體的面對角線相等得到△A1BC1為正三角形,即∠A1C1B=60°,
∴異面直線BC1與AC所成的角等于60°,C正確;
設(shè)點(diǎn)B到平面AMC的距離為d,正方體的棱長為2a,則$AC=2\sqrt{2}a$,
$OM=\sqrt{3}a$,由VB-AMC=VA-BCM,得
$\frac{1}{3}×\frac{1}{2}AC×OM×d=\frac{1}{3}×\frac{1}{2}×BC×AB×BM$,
即$2\sqrt{2}a×\sqrt{3}a×d=4{a}^{3}$,解得:d=$\sqrt{6}a$,D錯誤.
故選:D.

點(diǎn)評 本題考查了空間直線和平面的位置關(guān)系,考查了異面直線所成角的求法,訓(xùn)練了利用等積法求點(diǎn)到面的距離,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.滿足A∪B={1,2}的集合A、B共有9組,滿足A∪B={1,2,3}的集合A、B共有24組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠DAB為直角,AB∥CD,AD=CD=2AB,E,F(xiàn)分別為PC,CD的中點(diǎn).
(1)證明:AB⊥平面BEF;
(2)設(shè)PA=kAB,若平面EBD與平面BDC的夾角是大于45°的銳角,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD且PA=1,則點(diǎn)P到直線BD的距離是$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.橢圓D:$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$與圓M:x2+(y-m)2=9(m∈R),雙曲線G與橢圓D有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切,當(dāng)m=5時,求雙曲線G的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,M為棱BB1的中點(diǎn),則下列結(jié)論中錯誤的是( 。
A.D1O∥平面A1BC1B.D1O⊥平面AMC
C.異面直線BC1與AC所成的角等于60°D.二面角M-AC-B等于45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{{x}^{2}}{2}+{y}^{2}=1$,過圓x2+y2=1上一點(diǎn)做圓的切線,交橢圓于A,B兩點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),求△ABF的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,過左焦點(diǎn)F的直線與橢圓相交于A、B兩點(diǎn),且有$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=2,則橢圓的長半軸長a的值為( 。
A.2$\sqrt{3}$B.4C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{3x-2}{2x-1}$(x$≠\frac{1}{2}$).
(1)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2014}{2015}$)的值;
(2)已知數(shù)列{an}滿足a1=2,an+1=f(an),求證:{$\frac{1}{{a}_{n}-1}$}是等差數(shù)列;
(3)求證:a1a2…an>$\sqrt{2n+1}$.

查看答案和解析>>

同步練習(xí)冊答案