8.橢圓D:$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$與圓M:x2+(y-m)2=9(m∈R),雙曲線G與橢圓D有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切,當(dāng)m=5時(shí),求雙曲線G的方程.

分析 橢圓D:$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$可得焦點(diǎn)(±5,0).設(shè)雙曲線G的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a,b>0).可得雙曲線的漸近線為:y=$±\frac{a}x$.可得a2+b2=25.當(dāng)m=5時(shí),圓M:x2+(y-m)2=9(m∈R)的方程即為:x2+(y-5)2=9(m∈R),由于雙曲線的兩條漸近線恰好與圓M相切,圓心到漸近線的距離等于半徑3,聯(lián)立解出即可.

解答 解:橢圓D:$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$可得焦點(diǎn)(±5,0).
設(shè)雙曲線G的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a,b>0).
可得雙曲線的漸近線為:y=$±\frac{a}x$.
當(dāng)m=5時(shí),圓M:x2+(y-m)2=9(m∈R)的方程即為:x2+(y-5)2=9(m∈R),
∵雙曲線的兩條漸近線恰好與圓M相切,
∴$\frac{|0-5a|}{\sqrt{{a}^{2}+^{2}}}=3$,化為4a=3b.
又a2+b2=25,
解得$\left\{\begin{array}{l}{a=3}\\{b=4}\end{array}\right.$.
∴雙曲線G的方程為:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.

點(diǎn)評(píng) 本題考查了圓錐曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離公式、直線與圓相切的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知正實(shí)數(shù)a,b,c滿足a2+b2=c2,求(1+$\frac{c}{a}$)(1+$\frac{c}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a∈R,若函數(shù)y=eax+3x,x∈R有大于零的極值點(diǎn),則( 。
A.$a<-\frac{1}{3}$B.$a>-\frac{1}{3}$C.a<-3D.a>-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖甲,四邊形ABCD中,E是BC的中點(diǎn),DB=2,DC=1,BC=$\sqrt{5}$,AB=AD=$\sqrt{2}$.將(圖甲)沿直線BD折起,使二面角A-BD-C為60°(如圖乙),則點(diǎn)B到平面ACD的距為$\frac{2\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形.
(Ⅰ)求證:平面ABE⊥平面ADE;
(ⅡⅡ)求二面角A-DE-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,M為棱BB1的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是( 。
A.D1O∥平面A1BC1B.D1O⊥平面AMC
C.異面直線BC1與AC所成的角等于60°D.點(diǎn)B到平面AMC的距離為$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)($\sqrt{3}$,$\frac{1}{2}$),四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過(guò)原點(diǎn)O,設(shè)A(x1,y1),B(x2,y2),滿足4y1y2=x1x2,試證:kAB+kBC的值為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.函數(shù)f(x)=x3-x2-x+m,(m∈R)
(1)求f(x)的極值;
(2)當(dāng)m在什么范圍內(nèi)取值時(shí),曲線y=f(x)與直線y=1有三個(gè)不同的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)y=f(x),對(duì)任意實(shí)數(shù)x,y滿足:f(x+y)=f(x)+f(y)-3,且f($\frac{1}{2}$)=4.
(Ⅰ)當(dāng)n∈N*時(shí),求f(n)的表達(dá)式.
(Ⅱ)若b1=1,bn+1=$\frac{_{n}}{1+_{n}•f(n-1)}$(n∈N*),求bn
(Ⅲ)在bn滿足(Ⅱ)的前提下,及cn=$\root{3}{b{\;}_{n}}$(n∈N*),試證c1+c2+…+c2011<89.

查看答案和解析>>

同步練習(xí)冊(cè)答案