分析 過(guò)A作AE⊥BD,垂足為E,連接PE,則PE為點(diǎn)P到對(duì)角線BD的距離,即可得出結(jié)論.
解答 解:如圖所示,過(guò)A作AE⊥BD,垂足為E,連接PE,
則PE為點(diǎn)P到對(duì)角線BD的距離,
∵矩形ABCD,AB=3,BC=4,
∴3×4=5×AE
∴AE=$\frac{12}{5}$
又∵PA=1,PA⊥矩形ABCD
∴PE=$\sqrt{1+(\frac{12}{5})^{2}}$=$\frac{13}{5}$.
故答案為:$\frac{13}{5}$.
點(diǎn)評(píng) 本題考查空間距離,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{π}{2}$-1 | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | D1O∥平面A1BC1 | B. | D1O⊥平面AMC | ||
C. | 異面直線BC1與AC所成的角等于60° | D. | 點(diǎn)B到平面AMC的距離為$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com