6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率為$\sqrt{3}$,實(shí)軸為AB,平行于AB的直線與雙曲線C交于點(diǎn)M,N,則直線AM,AN的斜率之積為-2.

分析 利用雙曲線的離心率求出a,b關(guān)系,設(shè)出M,N,利用斜率公式,轉(zhuǎn)化求解即可.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率為$\sqrt{3}$,可得$\frac{c}{a}$=$\sqrt{3}$,∴$\frac{a}$=$\sqrt{2}$,
設(shè)點(diǎn)M(x,y),則N(-x,y)則$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,A(-a,0),B(a,0);
可得${y}^{2}=\frac{^{2}({x}^{2}-{a}^{2})}{{a}^{2}}$,所以kAM•kAN=$\frac{y}{x+a}•\frac{y}{-x+a}$=-$\frac{{y}^{2}}{{x}^{2}-{a}^{2}}$=$-\frac{^{2}}{{a}^{2}}$=-2.
故答案為:-2.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運(yùn)動(dòng)不喜好體育運(yùn)動(dòng)合計(jì)
男生20525           
女生101525
合計(jì)302050
已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)概率不超過0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說明你的理由.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$(n=a+b+c+d)
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某學(xué)校為了解該校高三年級學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對廣一模考試數(shù)學(xué)成績進(jìn)行分析,從中抽取了n 名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì)(該校全體學(xué)生的成績均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在[70,90)內(nèi)的所有數(shù)據(jù)的莖葉圖如圖2所示.

根據(jù)上級統(tǒng)計(jì)劃出預(yù)錄分?jǐn)?shù)線,有下列分?jǐn)?shù)與可能被錄取院校層次對照表為表( c ).
 分?jǐn)?shù)[50,85][85,110][110,150]
 可能被錄取院校層次 ? 本科 重本
(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學(xué)生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和專科兩個(gè)層次的學(xué)生中隨機(jī)抽取3 名學(xué)生進(jìn)行調(diào)研,用ξ表示所抽取的3 名學(xué)生中為重本的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=-20,若Sn的最小值僅為S6,則公差d的取值范圍是$(\frac{10}{3},4)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,AD=3BC,現(xiàn)將等腰梯形ABCD沿OB折起如圖乙所示的四棱錐P-OBCD,且PC=$\sqrt{3}$,點(diǎn)E是線段OP的中點(diǎn).

(1)證明:OP⊥CD;
(2)在圖中作出平面CDE與PB交點(diǎn)Q,并求線段QD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x≥y\\ y≥4x-3\\ x≥0,y≥0\end{array}\right.$,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則$y=tan({nx+\frac{π}{6}})$的圖象向右平移$\frac{π}{6}$后的表達(dá)式為(  )
A.$y=tan({2x+\frac{π}{6}})$B.$y=cot({x-\frac{π}{6}})$C.$y=tan({2x-\frac{π}{6}})$D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《九章算術(shù)》教會(huì)了人們用等差數(shù)列的知識來解決問題,《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾(注:從第2天開始,每天比前一天多織相同量的布),第一天織6尺布,現(xiàn)一月(按30天計(jì))共織540尺布”,則從第2天起每天比前一天多織( 。┏卟迹
A.$\frac{1}{2}$B.$\frac{24}{29}$C.$\frac{16}{31}$D.$\frac{16}{29}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在正方體ABCD-A1B1C1D1中,棱長為2,E、F分別是棱DD1、C1D1的中點(diǎn).
(1)求三棱錐B1-A1BE的體積;
(2)試判斷直線B1F與平面A1BE是否平行,如果平行,請?jiān)谄矫鍭1BE上作出與B1F平行的直線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.拋物線x2=4y的焦點(diǎn)為F,過點(diǎn)(0,-1)作直線交拋物線于不同兩點(diǎn)A,B,以AF,BF為鄰邊作平行四邊形FARB,求頂點(diǎn)R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案