14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=-20,若Sn的最小值僅為S6,則公差d的取值范圍是$(\frac{10}{3},4)$.

分析 利用等差數(shù)列的求和公式、二次函數(shù)的單調(diào)性即可得出.

解答 解:Sn=-20n+$\frac{n(n-1)}{2}$d=$\frac3vpf7zh{2}{n}^{2}$-$(20+\fracvbjlhzn{2})$n,
∵Sn的最小值僅為S6,則$\fracrfd7brp{2}$>0,$5.5<\frac{20+\fracvddpdpf{2}}hxb9tpj$<6.5,解得:$\frac{10}{3}<d<4$.
∴公差d的取值范圍是$(\frac{10}{3},4)$.
故答案為:$(\frac{10}{3},4)$.

點(diǎn)評 本題考查了等差數(shù)列的求和公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax2(a∈R)
(Ⅰ) 討論f(x)的單調(diào)性;
(Ⅱ) 若對于x∈(0,+∞),f(x)≤a-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,右焦點(diǎn)為F(c,0),弦PQ過F且垂直于x軸,過點(diǎn)P、點(diǎn)Q分別作直線AQ、AP的垂線,兩垂線交于點(diǎn)B,若B到直線PQ的距離小于2(a+c),則該雙曲線離心率的取值范圍是( 。
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(0,$\sqrt{3}$)D.(2,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某商場對A 商品近30 天的日銷售量y(件)與時間t(天)的銷售情況進(jìn)行整理,得到如下數(shù)據(jù)經(jīng)統(tǒng)計(jì)分析,日銷售量y(件)與時間t(天)之間具有線性相關(guān)關(guān)系.
 時間(t) 2 4 6 8 10
 日銷售量(y) 38 37 32 3330 
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法原理求出 y 關(guān)于t的線性回歸方程$\widehaty=bx+a$;
(2)已知A 商品近30 天內(nèi)的銷售價格Z(元)與時間t(天)的關(guān)系為:z=$\left\{\begin{array}{l}{t+20,(0<20,t∈N)}\\{-t+100,(20≤t≤30,t∈N)}\end{array}\right.$根據(jù)(1)中求出的線性回歸方程,預(yù)測t為何值時,A 商品的日銷售額最大.
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}-\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若a∈R,復(fù)數(shù)z=(a2-2a)+(a2-a-2)i是純虛數(shù),則( 。
A.a≠2且a≠-1B.a=0C.a=2D.a=0或a=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在邊長為4的正方形ABCD中,將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.
(Ⅰ)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),求證:平面A′ED⊥平面A′FD;
(Ⅱ)當(dāng)BE=BF=$\frac{1}{4}$BC,求三棱錐A′-EFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率為$\sqrt{3}$,實(shí)軸為AB,平行于AB的直線與雙曲線C交于點(diǎn)M,N,則直線AM,AN的斜率之積為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展開式的常數(shù)項(xiàng)為15,則$\int_{-a}^a{(\sqrt{1-{x^2}}+sin2x)dx}$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若該棱柱的體積為$\sqrt{3}$,AB=2$\sqrt{2},AC=\sqrt{2},∠BAC={60°}$,則此球的體積等于( 。
A.$\frac{{8\sqrt{2}π}}{3}$B.$\frac{9π}{2}$C.$\frac{{5\sqrt{10}π}}{3}$D.$\frac{{4\sqrt{3}π}}{3}$

查看答案和解析>>

同步練習(xí)冊答案