【題目】已知橢圓和雙曲線有共同的焦點(diǎn),點(diǎn)的交點(diǎn),若是銳角三角形,則橢圓離心率的取值范圍是( )

A. B. C. D.

【答案】C

【解析】

設(shè)∠F1PF2θ,則,得出,利用橢圓和雙曲線的焦點(diǎn)三角形的面積公式可得出,結(jié)合c2,可得出,然后將橢圓和雙曲線的方程聯(lián)立,求出交點(diǎn)P的橫坐標(biāo),利用該點(diǎn)的橫坐標(biāo)位于區(qū)間(﹣cc),得出,可得出,從而得出橢圓C1的離心率e的取值范圍.

解:設(shè)∠F1PF2θ,則,所以,,則

由焦點(diǎn)三角形的面積公式可得,所以,,

雙曲線的焦距為4,橢圓的半焦距為c2,則b2a2c2a243,

,所以,橢圓C1的離心率

聯(lián)立橢圓C1和雙曲線C2的方程,

,得,

由于△PF1F2為銳角三角形,則點(diǎn)P的橫坐標(biāo),則,所以,

因此,橢圓C1離心率e的取值范圍是

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足: . (其中為自然對(duì)數(shù)的底數(shù),

(Ⅰ)證明:

(Ⅱ)設(shè),是否存在實(shí)數(shù),使得對(duì)任意成立?若存在,求出的一個(gè)值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1BC的中點(diǎn).

(1)求異面直線BPAC1所成角的余弦值;

(2)求直線CC1與平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某保險(xiǎn)公司的推銷員中隨機(jī)抽取50名,統(tǒng)計(jì)這些推銷員某月的月銷售額(單位:千元),由統(tǒng)計(jì)結(jié)果得如圖頻數(shù)分別表:

月銷售額

分組

[12.25,14.75)

[14.75,17.25)

[17.25,19.75)

[19.75,22.25)

[22.25,24.75)

頻數(shù)

4

10

24

8

4

(1)作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計(jì)這些推銷員的月銷售額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)作代表);

(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),公司將推銷員的月銷售指標(biāo)確定為17.875千元,試判斷是否有60%的職工能夠完成該銷售指標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形中,,是邊長(zhǎng)為l的正方形,平面底面,若分別是的中點(diǎn).

(1)求證:底面;

(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1正方體中,點(diǎn)分別為邊,的中點(diǎn),將沿所在的直線進(jìn)行翻折,將沿所在直線進(jìn)行翻折,在翻折的過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )

A. 無(wú)論旋轉(zhuǎn)到什么位置,兩點(diǎn)都不可能重合

B. 存在某個(gè)位置,使得直線與直線所成的角為

C. 存在某個(gè)位置,使得直線與直線所成的角為

D. 存在某個(gè)位置,使得直線與直線所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點(diǎn),點(diǎn),直線過(guò)點(diǎn)且與曲線相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種藥在病人血液中的含量不低于2克時(shí),它才能起到有效治療的作用.已知每服用m)個(gè)單位的藥劑,藥劑在血液中的含量y(克)隨著時(shí)間x(時(shí))變化的函數(shù)關(guān)系式近似為,其中

1)若病人一次服用3個(gè)單位的藥劑,則有效治療時(shí)間可達(dá)多少小時(shí)?

2)若病人第一次服用2個(gè)單位的藥劑,4個(gè)小時(shí)后再服用m個(gè)單位的藥劑,要使接下來(lái)的2個(gè)小時(shí)中能夠持續(xù)有效治療,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的菱形且平面,.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案