【題目】如圖,三角形中,是邊長為l的正方形,平面底面,若分別是的中點.

(1)求證:底面;

(2)求幾何體的體積.

【答案】(1)證明見解析;(2).

【解析】試題分析:(1)通過面面平行證明線面平行,所以取的中點,的中點,連接.只需通過證明HG//BC,HF//AB來證明面GHF//面ABC,從而證明底面。

(2)原圖形可以看作是以點C為頂點,ABDE為底的四棱錐,所四棱錐的體積公式可求得體積。

試題解析:(1)取的中點,的中點,連接.(如圖)

分別是的中點,

,且

,且.

又∵為正方形,∴,.

.

為平行四邊形.

,又平面

平面.

(2)因為,∴

又平面平面,平面,∴平面.

∵三角形是等腰直角三角形,∴.

是四棱錐,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為5.

(1)求該拋物線的方程;

(2)已知拋物線上一點,過點作拋物線的兩條弦,且,判斷直線是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四個數(shù),前三個數(shù)成等比數(shù)列,和為19,后三個數(shù)成等差數(shù)列,和為12,求此四個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中

.且點為線段的中點, , 現(xiàn)將△沿進行翻折,使得二面角

的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.

(1)證明: ;

(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某基建公司年初以100萬元購進一輛挖掘機,以每年22萬元的價格出租給工程隊.基建公司負責挖掘機的維護,第一年維護費為2萬元,隨著機器磨損,以后每年的維護費比上一年多2萬元,同時該機器第x(x∈N* , x≤16)年末可以以(80﹣5x)萬元的價格出售.
(1)寫出基建公司到第x年末所得總利潤y(萬元)關(guān)于x(年)的函數(shù)解析式,并求其最大值;
(2)為使經(jīng)濟效益最大化,即年平均利潤最大,基建公司應(yīng)在第幾年末出售挖掘機?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 時,“”是“”的充要條件

B. 時,“”是“”的充分不必要條件

C. 時,“”是“”的必要不充分條件

D. 時,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)是否存在實數(shù),使恒成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的外接圓半徑R= ,角A,B,C的對邊分別是a,b,c,且 =
(1)求角B和邊長b;
(2)求SABC的最大值及取得最大值時的a,c的值,并判斷此時三角形的形狀.

查看答案和解析>>

同步練習冊答案