A. | $\frac{5}{4}<a<2$ | B. | $\frac{5}{4}≤a≤2$ | C. | $2≤a≤\frac{7}{2}$ | D. | $2<a<\frac{7}{2}$ |
分析 根據二項式展開式的通項公式,結合題意,得出不等式組$\left\{\begin{array}{l}{{C}_{8}^{6}{•a}^{6}{>C}_{8}^{5}{•a}^{5}}\\{{C}_{8}^{6}{•a}^{6}{>C}_{8}^{7}{•a}^{7}}\\{a>0}\end{array}\right.$,求出解集即可.
解答 解:${(x+\frac{a}{{\root{3}{x}}})^8}$(a>0)的展開式中通項公式為
Tr+1=C8r•x8-r•($\frac{a}{\root{3}{x}}$)r=C8r•ar•x8-$\frac{2}{3}$r),
又展開式中當且僅當第6項系數最大,
則$\left\{\begin{array}{l}{{C}_{8}^{6}{•a}^{6}{>C}_{8}^{5}{•a}^{5}}\\{{C}_{8}^{6}{•a}^{6}{>C}_{8}^{7}{•a}^{7}}\\{a>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{2{8a}^{6}>5{6a}^{5}}\\{2{8a}^{6}>{8a}^{7}}\\{a>0}\end{array}\right.$,
解得2<a<$\frac{7}{2}$.
故選:D.
點評 本題考查了二項展開式的通項公式以及二項展開式各項系數的應用問題,是基礎題目.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞) | B. | (0,2) | C. | (0,$\frac{2}{3}$) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 22017-1 | B. | 22016-1 | C. | 22015-1 | D. | 22014-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{7\sqrt{2}}}{16}$ | B. | $\frac{{7\sqrt{2}}}{8}$ | C. | $\frac{{21\sqrt{2}}}{8}$ | D. | $\frac{{21\sqrt{2}}}{4}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com