分析 由兩點間距離公式得到欲求當(dāng)四邊形PABN的周長最小時a的值,只需求出$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$的最小值時的a值,只需x軸上的點(a,0)與(1,3)和(3,1)距離之和最小即可,由此能求出a的值.
解答 解:∵點A(1,-2),B(4,0),P(a,1),N(a+1,1),
∴四邊形PABN的周長為
C=|PA|+|AB|+|BN|+|NP|
=$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(4-1)^{2}+(0+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$+1
=$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$+$\sqrt{13}$+1,
∴欲求當(dāng)四邊形PABN的周長最小時a的值,
只需求出$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$的最小值時的a值.
由于$\sqrt{(a-1)^{2}+(1+2)^{2}}$+$\sqrt{(a-3)^{2}+(1-0)^{2}}$=$\sqrt{(a-1)^{2}+(0-3)^{2}}$+$\sqrt{(a-3)^{2}+(0-1)^{2}}$,
表示x軸上的點(a,0)與(1,3)和(3,1)距離之和,只需該距離之和最小即可.
利用對稱的思想,可得該距離之和的最小值為(1,-3)與(3,1)間的距離,
且取得最小的a值為E(1,-3)與F(3,1)確定的直線與x軸交點的橫坐標(biāo),
∵直線EF的斜率k=$\frac{1+3}{3-1}$=2,∴直線EF方程為y+3=2(x-1),化簡得y=2x-5,
令y=0,得x=$\frac{5}{2}$,∴此時a的值為$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.
點評 本題考查實數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意兩點間距離公式和等價轉(zhuǎn)化思想的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{5}{4}$ | B. | ±$\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | -$\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q為真命題 | B. | (¬p)∧(¬q)為真命題 | C. | ¬(p∨q)為假命題 | D. | (¬p)∨q為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com