19.已知函數(shù)f(x)=2x+log2x,g(x)=2xlog2x+1,h(x)=2xlog2x-1的零點分別為a,b,c,則 a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

分析 利用函數(shù)的零點定義、對數(shù)函數(shù)的單調(diào)性即可判斷出.

解答 解:f(x)=2x+log2x=0,可得log2x=-2x,
g(x)=2xlog2x+1=0,可得log2x=-2-x,
h(x)=2xlog2x-1=0,可得log2x=2-x,
∵函數(shù)f(x)=2x+log2x,g(x)=2xlog2x+1,h(x)=2xlog2x-1的零點分別為a,b,c,
∴c<b<a,
故選:B.

點評 本題考查了函數(shù)的零點定義與對數(shù)函數(shù)的單調(diào)性,考查了推理能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.若$\frac{tanα}{tanα-1}$=2,則cosα=±$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.位于西部地區(qū)的A,B兩地,據(jù)多年的資料記載:A,B兩地一年中下雨天僅占6%和8%,而同時下雨的比例為2%,則A地為雨天時,B地也為雨天的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.0.12D.0.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=x+lnx-2零點所在區(qū)間為( 。
A.(0,1)B.(e,e2C.(1,e)D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x+\frac{π}{4})=sin(2x+\frac{π}{4})$
(Ⅰ)求f(x)解析式及其對稱中心;
(Ⅱ)若$a∈[-\frac{π}{4},\frac{7π}{24}]$,求f(a)的值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-ax2-bx-1,其中a,b∈R,e是自然對數(shù)的底數(shù),若f(1)=0,且函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.由曲線y=$\sqrt{x}$、直線y=-x+2及x軸所圍成的圖形的面積為( 。
A.$\frac{10}{3}$B.4C.$\frac{7}{6}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,為了解函數(shù)g(x)=Asin(ωx)的圖象,只要將y=f(x)的圖象( 。
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知點A(1,-2),B(4,0),P(a,1),N(a+1,1),當四邊形PABN的周長最小時,則a的值為$\frac{5}{2}$.

查看答案和解析>>

同步練習冊答案