2.某空間幾何體的三視圖如圖所示,則該幾何體的體積為264.

分析 由已知中的三視圖可得該幾何體是一個(gè)正方體和四棱錐的組合體,進(jìn)而可得答案.

解答 解:由已知中的三視圖可得該幾何體是一個(gè)正方體和四棱錐的組合體,
正方體的棱長(zhǎng)為6,故體積為:216,
四棱錐的底面面積為:36,
高h(yuǎn)=$\sqrt{{5}^{2}-(\frac{6}{2})^{2}}$=4,
故四棱錐的體積為:48,
故組合體的體積V=264,
故答案為:264

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:糧倉(cāng)開(kāi)倉(cāng)收糧,有人送來(lái)米1500石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得250粒內(nèi)夾谷30粒,則這批米內(nèi)夾谷約為(  )
A.140石B.160石C.180石D.200石

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知一個(gè)三棱錐的三視圖如圖所示,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該求的體積為(  )
A.$\frac{32π}{3}$B.C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.觀(guān)察下列等式:
1=1                     第一個(gè)式子
2+3+4=9                 第二個(gè)式子
3+4+5+6+7=25            第三個(gè)式子
4+5+6+7+8+9+10=49       第四個(gè)式子
照此規(guī)律下去:
(Ⅰ)寫(xiě)出第五個(gè)等式;
(Ⅱ)你能做出什么一般性的猜想?請(qǐng)用數(shù)學(xué)歸納法證明猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.①命題“存在${x_0}∈R,{2^{x_0}}≤0$”的否定是“不存在${x_0}∈R,{2^{x_0}}>0$”
②若z是純虛數(shù),則z2<0
③若x+y≠3,則x≠2或y≠1
④以直角三角形的一邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐
以上正確命題的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.拋物線(xiàn)y=ax2的準(zhǔn)線(xiàn)方程是( 。
A.$y=-\frac{a}{2}$B.$y=-\frac{a}{4}$C.$y=-\frac{1}{2a}$D.$y=-\frac{1}{4a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知cos(α-$\frac{π}{4}$)=$\frac{3}{5}$,sin($\frac{π}{4}$+β)=$\frac{12}{13}$,且β∈(0,$\frac{π}{4}$),α∈($\frac{3}{4}$,$\frac{3π}{4}$),求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a,b∈R,那么“${π^{\frac{a}}}>π$”是“ea>eb>1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在正方體ABCD-A′B′C′D′中,求面A′BCD′與面ABCD所成二面角的大。ㄈ′J角).

查看答案和解析>>

同步練習(xí)冊(cè)答案