16.已知函數(shù)f(x)=x2ex,當(dāng)x∈[-1,1]時,不等式f(x)<m恒成立,則實數(shù)m的取值范圍為(  )
A.[$\frac{1}{e}$,+∞)B.($\frac{1}{e}$,+∞)C.[e,+∞)D.(e,+∞)

分析 先求出函數(shù)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)函數(shù)的不等式,先求出f(x)在[-1,1]上的單調(diào)性,從而求出函數(shù)的最大值和最小值.

解答 解:(1)f′(x)=x(x+2)ex
令f′(x)>0,解得:x<-2或x>0,
令f′(x)<0,解得:-2<x<0,
∵x∈[-1,1],
∴當(dāng)-1≤x≤0時,函數(shù)f(x)為減函數(shù),當(dāng)0≤x≤1時,函數(shù)f(x)為增函數(shù),
則當(dāng)x=0時,函數(shù)取得極小值f(0)=0,
∵f(1)=e,f(-1)=$\frac{1}{e}$,
∴函數(shù)f(x)在[-1,1]上的最大值為e,
∵當(dāng)x∈[-1,1]時,不等式f(x)<m恒成立,
∴m>e,
故選:D.

點評 本題考查不等式恒成立問題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系.已知曲線C1:$\left\{\begin{array}{l}x=4+cost\\ y=-3+sint\end{array}$(t為參數(shù)),C2:$\left\{\begin{array}{l}x=6cosθ\\ y=2sinθ\end{array}$(θ為參數(shù)).
(Ⅰ)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若C1上的點P對應(yīng)的參數(shù)為t=-$\frac{π}{2}$,Q為C2上的動點,求線段PQ的中點M到直線C3:ρcosθ-$\sqrt{3}$ρsinθ=8+2$\sqrt{3}$  距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知偽代碼如下,則輸出結(jié)果s=56.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知物體初始溫度是T0,經(jīng)過t分鐘后物體溫度是T,且滿足$T={T_α}+({T_0}-{T_α})•{2^{-kt}}$,(Tα為室溫,k是正常數(shù)).某浴場熱水是由附近發(fā)電廠供應(yīng),已知從發(fā)電廠出來的  95°C的熱水,在15°C室溫下,經(jīng)過100分鐘后降至25°C.
(1)求k的值;
(2)該浴場先用冷水將供應(yīng)的熱水從95°C迅速降至55°C,然后在室溫15°C下緩慢降溫供顧客使用.當(dāng)水溫在33°C至43°C之間,稱之為“洗浴溫區(qū)”.問:某人在“洗浴溫區(qū)”內(nèi)洗浴時,最多可洗浴多長時間?(結(jié)果保留整數(shù))(參考數(shù)據(jù):2-0.5≈0.70,2-1.2≈0.45)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos2x+cos2(x+$\frac{π}{3}$)(x∈R).
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,動點P在雙曲線的右支上(P點不在x軸上),△PF1F2的內(nèi)切圓(I為圓心)與x軸切于E點.
(1)求證:E點是雙曲線的右頂點;
(2)過F2作直線PI的垂線,且交直線PI于M點,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,直三棱柱ABC-A1B1C1中,AC=CB,D,E分別是AB,BB1的中點.
(1)證明:BC1∥平面A1CD;
(2)求證:CD⊥平面ABB1A1
(3)設(shè)AA1=AC=CB=2,AB=2$\sqrt{2}$,求E到截面A1DC的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$,滿足$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若a,b,c三數(shù)成等比數(shù)列,公比q=2,則$\frac{a+c}$=$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊答案