分析 (1)連接AC1交A1C于點F,證明BC1∥DF,然后證明BC1∥平面A1CD.
(2)說明AA1⊥CD,CD⊥AB,然后證明CD⊥平面ABB1A1.
(3)法1:說明DE⊥A1D,然后求出${V}_{C-{DEA}_{1}}$,通過${V}_{E-{DCA}_{1}}={V}_{C-DE{A}_{1}}$,求解距離.
法2:判斷ED為E到平面A1CD的距離,通過Rt△DBE中,求解ED即可.
解答 證明:(1)連接AC1交A1C于點F,則F為AC1的中點,…(1分)
又D是AB的中點,連接DF,則BC1∥DF.…(2分)
∵DF?平面A1CD,BC1?平面A1CD…(3分)
∴BC1∥平面A1CD …(4分)
(2)∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,…(5分)
∵CD?平面ABC,∴AA1⊥CD,…(6分)
由已知AC=CB,D為AB的中點,∴CD⊥AB,…(7分)
又AA1∩AB=A,于是CD⊥平面ABB1A1,…(8分)
(3)由AA1=AC=CB=2,AB=$2\sqrt{2}$得
∠ACB=90°,CD=$\sqrt{2}$,A1D=$\sqrt{6}$,DE=$\sqrt{3}$,A1E=3,
故A1D2+DE2=A1E2,DE⊥A1D,…(9分)
∴${V}_{C-{DEA}_{1}}=\frac{1}{3}×\frac{1}{2}×\sqrt{6}×\sqrt{3}×\sqrt{2}=1$…(10分)
又CD⊥A1D,∴△A1DC為直角三角形,…(11分)
∴${V}_{E-{DCA}_{1}}={V}_{C-DE{A}_{1}}$,
∴$\frac{1}{3}×\sqrt{3}•d=1$,∴$d=\sqrt{3}$…(12分)
法2:∵CD⊥平面ABB1A1,且CD?平面A1DC.
∴平面A1CD⊥平面ABB1A1.…(10分)
∵平面A1CD∩平面ABB1A1=DA1且ED⊥DA1
∴ED⊥平面A1CD,∴ED為E到平面A1CD的距離…(11分)
在Rt△DBE中,ED=$\sqrt{D{B^2}+B{E^2}}=\sqrt{3}$…(12分)
點評 本題考查直線與平面平行與垂直的判斷,幾何體的體積的求法,距離的求法,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{e}$,+∞) | B. | ($\frac{1}{e}$,+∞) | C. | [e,+∞) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 120° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | -8 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com