A. | f(1)+f(3)<2f(2) | B. | f(1)+f(3)>2f(2) | C. | f(1)+f(3)>f(0)+f(4) | D. | f(1)+f(0)<f(3)+f(4) |
分析 借助導(dǎo)數(shù)知識(shí),根據(jù)(x-2)f′(x)>0,判斷函數(shù)的單調(diào)性,再利用單調(diào)性,比較函數(shù)值的大小即可.
解答 解:∵對(duì)于R上可導(dǎo)的任意函數(shù)f(x),(x-2)f′(x)>0
∴有 $\left\{\begin{array}{l}{x-2>0}\\{f′(x)>0}\end{array}\right.$或 $\left\{\begin{array}{l}{x-2<0}\\{f′(x)<0}\end{array}\right.$,
即當(dāng)x∈(2,+∞)時(shí),f(x)為增函數(shù),
當(dāng)x∈(-∞,2)時(shí),f(x)為減函數(shù)
∴f(1)>f(2),f(3)>f(2)
∴f(1)+f(3)>2f(2)
故選:B.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)判斷抽象函數(shù)單調(diào)性,以及利用函數(shù)的單調(diào)性比較函數(shù)值的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin1-cos1 | B. | cos1-sin1 | C. | sin1+cos1 | D. | -sin1-cos1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{1}{5}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a,b 不全為0 | B. | a,b全不為0 | ||
C. | a,b 至少有一個(gè)為0 | D. | a不為0且b為0,或 b不為0且a為0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com