分析 (1)由條件利用絕對值三角不等式求得實數(shù)a的最大值.
(2)由條件利用二維形式的柯西不等式,求得a2+b2+c2的最小值.
解答 解:(1)函數(shù)f(x)=|x+sin2θ|,g(x)=2|x-cos2θ|,θ∈[0,2π],且關(guān)于x的不等式2f(x)≥a-g(x)對?x∈R恒成立,
故 2|x+sin2θ|≥a-2|x-cos2θ|恒成立,即 2|x+sin2θ|+2|x-cos2θ|≥a 恒成立.
∵2|x+sin2θ|+2|x-cos2θ|≥|2x+2sin2θ-(2x-2cos2θ)|=2,∴2≥a,即a≤2,∴a的最大值為m=2.
(2)∵a+2b+3c=2m=4,∴16=(a+2b+3c)2≤(a2+b2+c2)•(12+22+32)=14•(a2+b2+c2),
∴a2+b2+c2 ≥$\frac{16}{14}$=$\frac{8}{7}$,即a2+b2+c2的最小值 為$\frac{8}{7}$.
點評 本題主要考查絕對值三角不等式、二維形式的柯西不等式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{PH}{HC}=\frac{1}{2}$ | B. | PH=HC | C. | $\frac{PH}{HC}=2$ | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x1)<0,f(x2)<0 | B. | f(x1)>0,f(x2)>0 | C. | f(x1)>0,f(x2)<0 | D. | f(x1)<0,f(x2)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
1 | 1 | 1 | 1 | 1 | 1 | … |
1 | 2 | 3 | 4 | 5 | 6 | … |
1 | 3 | 5 | 7 | 9 | 11 | … |
1 | 4 | 7 | 10 | 13 | 16 | … |
1 | 5 | 9 | 13 | 17 | 21 | … |
1 | 6 | 11 | 16 | 21 | 26 | … |
… | … | … | … | … | … | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com