6.已知函數(shù)f(x)=|x+sin2θ|,g(x)=2|x-cos2θ|,θ∈[0,2π],且關(guān)于x的不等式2f(x)≥a-g(x)對?x∈R恒成立.
(1)求實數(shù)a的最大值m;
(2)若正實數(shù)a,b,c滿足a+2b+3c=2m,求a2+b2+c2的最小值.

分析 (1)由條件利用絕對值三角不等式求得實數(shù)a的最大值.
(2)由條件利用二維形式的柯西不等式,求得a2+b2+c2的最小值.

解答 解:(1)函數(shù)f(x)=|x+sin2θ|,g(x)=2|x-cos2θ|,θ∈[0,2π],且關(guān)于x的不等式2f(x)≥a-g(x)對?x∈R恒成立,
故 2|x+sin2θ|≥a-2|x-cos2θ|恒成立,即  2|x+sin2θ|+2|x-cos2θ|≥a 恒成立.
∵2|x+sin2θ|+2|x-cos2θ|≥|2x+2sin2θ-(2x-2cos2θ)|=2,∴2≥a,即a≤2,∴a的最大值為m=2.
(2)∵a+2b+3c=2m=4,∴16=(a+2b+3c)2≤(a2+b2+c2)•(12+22+32)=14•(a2+b2+c2),
∴a2+b2+c2 ≥$\frac{16}{14}$=$\frac{8}{7}$,即a2+b2+c2的最小值 為$\frac{8}{7}$.

點評 本題主要考查絕對值三角不等式、二維形式的柯西不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.投資生產(chǎn)某種產(chǎn)品,并用廣告方式促銷,已知生產(chǎn)這種產(chǎn)品的年固定投資為10萬元,每生產(chǎn)1萬件產(chǎn)品還需投入18萬元,又知年銷量W(萬件)與廣告費x(萬元)之間的函數(shù)關(guān)系為W=$\frac{kx+1}{x+1}$(x≥0),且知投入廣告費1萬元時,可多銷售2萬件產(chǎn)品,預(yù)計此種產(chǎn)品年銷售收入M(萬元)等于年成本(萬元)(年成本中不含廣告費用)的150%與年廣告費用50%的和.
(1)試將年利潤y(萬元)表示為年廣告費x(萬元)的函數(shù);
(2)當(dāng)年廣告費為多少萬元時,年利潤最大?最大年利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,且滿足a1=a(a≠3),an+1=Sn+3n,設(shè)bn=sn-3n,n∈N+
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)若an+1≥an,n∈N+,求實數(shù)a的最小值;
(3)若一個數(shù)列的前n項和為An,若An可以寫出tp(t,p∈N+且t>1,p>1)的形式,則稱An為“指數(shù)型和”.
當(dāng)a=4時,給出一個新數(shù)列{en},其中en=$\left\{\begin{array}{l}{3,n=1}\\{_{n},n≥2}\end{array}$,設(shè)這個新數(shù)列的前n項和為Cn.,問{Cn}中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.正三棱錐P-ABC,E、F分別為PA、AB的中點,G在BC上,且$\frac{BG}{GC}$=2,過E、F、G三點作正三棱錐P-ABC的截面EFGH,則H的位置位于PC( 。
A.$\frac{PH}{HC}=\frac{1}{2}$B.PH=HCC.$\frac{PH}{HC}=2$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x0是函數(shù)f(x)=2${\;}^{x}-\frac{1}{x}$的一個零點,x1∈(0,x0),x2∈(x0,+∞),則( 。
A.f(x1)<0,f(x2)<0B.f(x1)>0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)<0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=x2(x-2)2-a|x-1|+a有4個零點,則a的取值范圍為{-$\frac{32}{27}$}∪(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{mx}{lnx}$,曲線y=f(x)在點(e2,f(e2))處的切線與直線2x+y=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)求f(x)的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù)k,使得對于定義域內(nèi)的任意x,f(x)>$\frac{k}{lnx}$+2$\sqrt{x}$恒成立,若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某資料室在計算機使用中,如表所示,編碼以一定規(guī)則排列,且從左至右以及從上到下都是無限的,記第i行、第j列的編碼為ai,j(i,j∈N*)求:
(Ⅰ)第2行第n列的編碼a2,n
(Ⅱ)此表中,第m行第n列的編碼am,n
111111
123456
1357911
147101316
159131721
1611162126

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.下列兩個函數(shù)是否相同?為什么?
(1)f(x)=$\frac{x}{x}$與g(x)=1;
(2)f(x)=x與g(x)=$\sqrt{{x}^{2}}$;
(3)f(x)=$\frac{{x}^{4}-1}{{x}^{2}+1}$與g(x)=x2-1;
(4)y=sin2x+cos2x與y=1;
(5)f(x)=lgx2與g(x)=2lgx;
(6)f(x)=x$\root{3}{x-1}$與g(x)=$\root{3}{{x}^{4}-{x}^{3}}$.

查看答案和解析>>

同步練習(xí)冊答案