分析 求出雙曲線(xiàn)的漸近線(xiàn)方程,將漸近線(xiàn)方程與橢圓的方程聯(lián)立,求出兩個(gè)交點(diǎn)的坐標(biāo);利用兩點(diǎn)的距離公式求出|MN|.
解答 解:不妨取雙曲線(xiàn)的漸近線(xiàn)的方程為y=$\frac{a}$x,
與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1聯(lián)立消去y得2x2=a2
解得x=±$\frac{\sqrt{2}}{2}$a代入漸近線(xiàn)方程得M,N兩點(diǎn)的坐標(biāo)分別為:($\frac{\sqrt{2}}{2}$a,$\frac{\sqrt{2}}{2}$b),(-$\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$b),
所以|MN|=$\sqrt{(\sqrt{2}a)^{2}+(\sqrt{2}b)^{2}}$=$\sqrt{2({a}^{2}+^{2})}$.
故答案為:$\sqrt{2({a}^{2}+^{2})}$.
點(diǎn)評(píng) 本題考查雙曲線(xiàn)的漸近線(xiàn)方程與雙曲線(xiàn)的焦點(diǎn)位置有關(guān)、考查解決直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題,常將直線(xiàn)方程與圓錐曲線(xiàn)方程聯(lián)立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行 | B. | 異面 | C. | 平行或異面 | D. | 相交、平行或異面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com