19.已知函數(shù)f(x)=lnx-a(x-1)
(1)若函數(shù)f(x)在(1,+∞)是單調(diào)減函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,當n∈N*時,證明:(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{3}}$)…(1+$\frac{1}{{2}^{n}}$)<e(其中(e≈2.718…即自然對數(shù)的底數(shù))

分析 (1)根據(jù)函數(shù)單調(diào)性與導數(shù)之間的關(guān)系,可得f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立,結(jié)合x>1加以討論可得實數(shù)a的取值范圍為[1,+∞);
(2)由(1)知:當a=1時f(x)在(1,+∞)上單調(diào)遞減,可得lnx<x-1在(1,+∞)上成立,由此令x=1+$\frac{1}{2n}$得ln(1+$\frac{1}{2n}$)<$\frac{1}{2n}$,分別取n=1,2,3,…,n將得到的式子相加,再結(jié)合對數(shù)的運算法則即可證出.

解答 解:(1)∵函數(shù)f(x)在(1,+∞)是單調(diào)減函數(shù),
∴f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立.(7分)
∵x>1,可得0<$\frac{1}{x}$<1,
∴a≥1,即實數(shù)a的取值范圍為[1,+∞)…(9分)
(2)證明:由(1)得當a=1時,f(x)在(1,+∞)上單調(diào)遞減,
∴f(x)=lnx-(x-1)<f(1)=0,可得 lnx<x-1,(x>1),
令x=1+$\frac{1}{2n}$,可得ln(1+$\frac{1}{2n}$)<$\frac{1}{2n}$
分別取n=1,2,3,…,n得
ln(1+$\frac{1}{2}$)+ln(1+$\frac{1}{{2}^{2}}$)+ln(1+$\frac{1}{{2}^{3}}$)+…+ln(1+$\frac{1}{{2}^{n}}$)<$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1,
即ln[(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{3}}$)…(1+$\frac{1}{{2}^{n}}$)]<lne,
可得(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$+)(1+$\frac{1}{{2}^{3}}$)…(1+$\frac{1}{{2}^{n}}$)<e,對任意的n∈N*成立.

點評 本題求函數(shù)的單調(diào)區(qū)間與極值,并依此證明不等式恒成立.著重考查了利用導數(shù)研究函數(shù)的單調(diào)性、求函數(shù)的極值和不等式恒成立的證明等知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=3,1+$\frac{tanA}{tanB}$=$\frac{2c}$,則b+c的最大值為( 。
A.3B.6C.9D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在半圓x2+y2=4(y≥0)上任取一點P,則點P的橫坐標小于1的概率是( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如果x∈(0,π),那么$y=sinx+\frac{4}{sinx}$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若$f(x)={log_2}({x^2}+2)\;\;(x≥0)$,則它的反函數(shù)是f-1(x)=$\sqrt{{2^x}-2}\;\;(\;x≥1\;)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知點P(0,5)及圓C:x2+y2+4x-12y+24=0.若直線l過P且被圓C截得的線段長為4$\sqrt{3}$,則直線l的一般式方程為3x-4y+20=0或x=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知點P1(1,3),P2(4,-6),P是直線P1P2上的一點,且$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$,那么點P的坐標為(3,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一批熱水器共98臺,其中甲廠生產(chǎn)的有56臺,乙廠生產(chǎn)的有42臺,用分層抽樣從中抽出一個容量為14的樣本,那么甲、乙兩廠各抽得的熱水器的臺數(shù)是( 。
A.甲廠9臺,乙廠5臺B.甲廠8臺,乙廠6臺
C.甲廠10臺,乙廠4臺D.甲廠7臺,乙廠7臺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+2y-5≤0}\\{x-y-2≤0}\\{x≥0}\end{array}}\right.$,則目標函數(shù)z=2x+3y的最大值是( 。
A.10B.9C.8D.7

查看答案和解析>>

同步練習冊答案