11.已知點P1(1,3),P2(4,-6),P是直線P1P2上的一點,且$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$,那么點P的坐標為(3,-3).

分析 設出點P,表示出向量$\overrightarrow{{P}_{1}P}$、$\overrightarrow{{PP}_{2}}$,根據向量相等列出方程組,即可求出點P的坐標.

解答 解:設點P(x,y),
且P1(1,3),P2(4,-6),
$\overrightarrow{{P}_{1}P}$=(x-1,y-3),
$\overrightarrow{{PP}_{2}}$=(4-x,-6-y),
又$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$,
∴$\left\{\begin{array}{l}{x-1=2(4-x)}\\{y-3=2(-6-y)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$,
∴點P的坐標為(3,-3).
故答案為:(3,-3).

點評 本題考查了平面向量的坐標表示與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為$\frac{5\sqrt{2}}{3}$.
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點,點M(-$\frac{7}{3}$,0),求證:$\overrightarrow{MA}$•$\overrightarrow{MB}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知z∈C,滿足不等式$z\overline z+iz-i\overline z<0$的點Z的集合用陰影表示為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-a(x-1)
(1)若函數(shù)f(x)在(1,+∞)是單調減函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,當n∈N*時,證明:(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{3}}$)…(1+$\frac{1}{{2}^{n}}$)<e(其中(e≈2.718…即自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在數(shù)列{an}中,${a_n}={10^{\frac{n}{11}}}$,記Tn=a1•a2•…•an,則使${T_n}>{10^5}$成立的最小正整數(shù)n=11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知tan(α+$\frac{5π}{12}$)=2,tan($β+\frac{π}{6}$)=3,則tan(α-β+$\frac{π}{4}$)等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{7}$C.$\frac{1}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=ex-ax-1(e是自然對數(shù)的底數(shù)).討論y=f(x)的單調區(qū)間,若存在極值,求出極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.正方體的8個頂點兩兩連線所在的直線中,共構成異面直線對為174對.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.數(shù)列{an}的前n項和a1+a2+a3+…+an可簡記為$\sum_{i=1}^n{a_i}$.已知數(shù)列{an}滿足a1=1,且${a_{n+1}}={a_n}+\frac{1}{n+1}$,n∈N,則$\sum_{k=1}^{2015}{k({a_{2016}}}-{a_k})$=1015560.

查看答案和解析>>

同步練習冊答案