分析 根據(jù)[(x+y-3)+1]≤ex+y-3,[(2x-y+2)+1]≤e2x-y+2,得到$\left\{\begin{array}{l}{x+y-2{≤e}^{x+y-3}}\\{2x-y+3{=e}^{2x-y+2}}\end{array}\right.$,求出x,y的值即可.
解答 解:令f(x)=ex-(x+1),
則f′(x)=ex-1,
令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<0,
故f(x)的最小值是f(0)=0,
故ex≥x+1,
∵3x+1≥ex+y-3+e2x-y+2,
∴[(x+y-3)+2]+[(2x-y+2)+1]
≥ex+y-3+e2x-y+2,
即[(x+y-3)+1]≤ex+y-3,[(2x-y+2)+1]≤e2x-y+2,
∴$\left\{\begin{array}{l}{x+y-2{≤e}^{x+y-3}}\\{2x-y+3{=e}^{2x-y+2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x+y-3=0}\\{2x-y+2=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{8}{3}}\end{array}\right.$,
∴x+y=3,
故答案為:3.
點(diǎn)評 本題考查了不等式的性質(zhì),考查轉(zhuǎn)化思想,是一道綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 |
y | 4.5 | 4 | t | 2.5 |
A. | 3 | B. | 3.15 | C. | 3.5 | D. | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩個(gè)長方體 | B. | 兩個(gè)圓柱 | ||
C. | 一個(gè)長方體和一個(gè)圓柱 | D. | 一個(gè)球和一個(gè)長方體 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點(diǎn)P與圖中的點(diǎn)D重合 | B. | 點(diǎn)P與圖中的點(diǎn)E重合 | ||
C. | 點(diǎn)P與圖中的點(diǎn)F重合 | D. | 點(diǎn)P與圖中的點(diǎn)G重合 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}+1$ | B. | $\frac{π}{2}+3$ | C. | $\frac{3π}{2}+1$ | D. | $\frac{3π}{2}+3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,5,7} | B. | {3,4,6} | C. | {6} | D. | U |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com