8.如圖,在△ABC中,D為線段BC的中點(diǎn),E,F(xiàn),G依次為線段AD從上至下的3個(gè)四等分點(diǎn),若$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AP}$,則( 。
A.點(diǎn)P與圖中的點(diǎn)D重合B.點(diǎn)P與圖中的點(diǎn)E重合
C.點(diǎn)P與圖中的點(diǎn)F重合D.點(diǎn)P與圖中的點(diǎn)G重合

分析 推導(dǎo)出$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}$,$\overrightarrow{AD}$=2$\overrightarrow{AF}$,從而$\overrightarrow{AB}+\overrightarrow{AC}=4\overrightarrow{AF}$,由此得到點(diǎn)P與圖中的點(diǎn)F重合.

解答 解:∵在△ABC中,D為線段BC的中點(diǎn),E,F(xiàn),G依次為線段AD從上至下的3個(gè)四等分點(diǎn),
∴$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}$,$\overrightarrow{AD}$=2$\overrightarrow{AF}$,
∴$\overrightarrow{AB}+\overrightarrow{AC}=4\overrightarrow{AF}$,
∴點(diǎn)P與圖中的點(diǎn)F重合.
故選:C.

點(diǎn)評(píng) 本題考查與點(diǎn)P重合的點(diǎn)的判斷,考查平面向量運(yùn)算法則等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.直線3x+$\sqrt{3}$y+1=0的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在區(qū)間(0,1)內(nèi)為增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.[2,+∞)B.(0,2)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)圖象的一部分,對(duì)不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,則φ的值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若實(shí)數(shù)x,y滿(mǎn)足3x+1≥ex+y-3+e2x-y+2則x+y=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知acsinB=4sinA,且cosA=$\frac{7}{8}$.
(1)求△ABC的面積;
(2)若a=$\sqrt{10}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為M,過(guò)原點(diǎn)O的直線交橢圓于A,B兩點(diǎn),若|AB|=|BM|=4,cos∠ABM=$\frac{3}{4}$,則橢圓方程為$\frac{{x}^{2}}{8}+\frac{15{y}^{2}}{56}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.甲、乙兩企業(yè)生產(chǎn)同一種型號(hào)零件,按規(guī)定該型號(hào)零件的質(zhì)量指標(biāo)值落在[45,75)內(nèi)為優(yōu)質(zhì)品,從兩個(gè)企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了500件,測(cè)量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如表:
甲企業(yè):
 分組[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 頻數(shù) 10 40 115 165 120 45 5
乙企業(yè):
分組[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 頻數(shù) 5 60 110 160 90 70 5
(1)已知甲企業(yè)的500件產(chǎn)品質(zhì)量指標(biāo)值的樣本方差s2=142,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值X服從正態(tài)分布N(μ,σ2),其中μ近似為質(zhì)量指標(biāo)值的樣本平均數(shù)$\overline{x}$(注:求$\overline{x}$時(shí),同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),σ2近似為樣本方差s2,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計(jì)所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于71.92的產(chǎn)品的概率(精確到0.001)
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并問(wèn)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”
  甲廠乙廠 合計(jì) 
 優(yōu)質(zhì)品   
 非優(yōu)質(zhì)品   
 合計(jì)   
附注:
參考數(shù)據(jù):$\sqrt{142}$≈11.92
參考公式:P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.0722.706 3.841 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為1,若S6=3S3,則a9=( 。
A.11B.$\frac{19}{2}$C.9D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案