17.己知二次函數(shù)y=(m-2)x2+2(m-2)x+4的值恒大于零,求實(shí)數(shù)m的取值范圍.

分析 利用二次函數(shù)的簡(jiǎn)單性質(zhì)列出不等式求解即可.

解答 解:二次函數(shù)y=(m-2)x2+2(m-2)x+4的值恒大于零,
可得$\left\{\begin{array}{l}{m-2>0}\\{4(m-2)^{2}-16(m-2)<0}\end{array}\right.$,解得m∈(2,6).
實(shí)數(shù)m的取值范圍:(2,6).

點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b為兩個(gè)不相等的非零實(shí)數(shù),則方程ax-y+b=0與bx2+ay2=ab所表示的曲線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=ax2-(a+1)x+1-b(a,b∈R).
(1)若a=1,不等式f(x)≥x-1在b∈[6,17]上有解,求x的取值范圍;
(2)若b=0,函數(shù)g(x)=$\frac{f(x)}{x}$是奇函數(shù),判斷并證明y=g(x)在(0,+∞)上的單調(diào)性;
(3)若f(-1)=0,且|a-b|≤t(t>0),求a2+b2+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x-1}{\sqrt{x}}$.
(1)證明函數(shù)f(x)在定義域上是單調(diào)增函數(shù);
(2)求函數(shù)f(x)在[2,+∞)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a,b>0,a+2b=3ab.
(1)求2a+b的最小值;
(2)若a2+λb2≥3(b-a)(2a+b)對(duì)任意a,b>0恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在ABC中,角A、B、C的對(duì)邊分別為a、b、c,若$\frac{cosA}{a}+\frac{cosC}{c}=\frac{1}$,則( 。
A.a、b、c成等比數(shù)列B.a、b、c成等差數(shù)列
C.a2、b2、c2成等比數(shù)列D.a2、b2、c2成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若A=60°,B=45°,c=20cm,則△ABC的AB邊上的高h(yuǎn)c=$10(3-\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)y=(log2$\frac{x}{3}$)(log2$\frac{x}{4}$)在區(qū)間[2$\sqrt{2}$,8]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求點(diǎn)P(3,5)關(guān)于直線l:x-3y+2=0對(duì)稱的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案