15.定義行列式運(yùn)算 $|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{a4}\end{array}|$=a1a4-a2a3.將函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinx}\\{1}&{cosx}\end{array}|$的圖象向左平移n(n>0)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則n的最小值為 ( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 由條件根據(jù)函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱性,可得n+$\frac{π}{6}$=kπ,k∈z,從而求得n的最小值.

解答 解:函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinx}\\{1}&{cosx}\end{array}|$=$\sqrt{3}$cosx-sinx=2cos(x+$\frac{π}{6}$)的圖象向左平移n(n>0)個(gè)單位,
所得圖象對(duì)應(yīng)的函數(shù)為y=2cos(x+n+$\frac{π}{6}$),根據(jù)所得函數(shù)為偶函數(shù),可得n+$\frac{π}{6}$=kπ,k∈z,
則n的最小值為$\frac{5π}{6}$,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.過拋物線:y2=2px(p>0)的焦點(diǎn)F作傾斜角為60°的直線l,若直線l與拋物線在第一象限的交點(diǎn)為A,并且點(diǎn)A也在雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線上,則雙曲線的離心率為( 。
A.$\frac{\sqrt{21}}{3}$B.$\sqrt{13}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,莖葉圖記錄了甲、乙兩組各四名同學(xué)完成某道數(shù)學(xué)題的得分情況.乙組某個(gè)數(shù)據(jù)的個(gè)位數(shù)模糊,記為x,已知甲、乙兩組的平均成績(jī)相同.
(1)求x的值,并判斷哪組學(xué)生成績(jī)更穩(wěn)定;
(2)在甲、乙兩組中各抽出一名同學(xué),求這兩名同學(xué)的得分之和低于20分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)到一條漸近線的距離為a,則雙曲線的離心率等于( 。
A.$\frac{\sqrt{2}}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸為正半軸為極軸建立極坐標(biāo)系,圓C和直線l的極坐標(biāo)方程分別為ρ=2cosθ,$\sqrt{5}$ρcos(θ+α)=2(其中tanα=2,α∈(0,$\frac{π}{2}$)).
(Ⅰ)求圓C和直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C和直線l相交于點(diǎn)A和點(diǎn)B,求以AB為直徑的圓D的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.閱讀如圖的程序框圖,若輸出的y=$\frac{1}{2}$,則輸入的x的值可能為( 。
A.-1B.0C.1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{y≥-x+b}\end{array}\right.$且z=2x+y的最小值為4,則實(shí)數(shù)b的值為( 。
A.1B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知三棱錐V-ABC,VA⊥平面ABC,在三角形ABC中,∠BAC=120°,AB=AC=VA=2,三棱錐V-ABC的外接球的表面積為( 。
A.16πB.$\frac{32π}{3}$C.$\frac{20\sqrt{5}π}{3}$D.20π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.根據(jù)如下樣本數(shù)據(jù)
x0123
y3m710
得到的回歸方程為$\hat y=\frac{12}{5}x+\frac{12}{5}$,則m的值為( 。
A.1B.$\frac{3}{2}$C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案