分析 取AE的中點(diǎn)F,連接DF,BF,設(shè)AD=1,求出BD,由勾股定理可證DE⊥BE,由EM=AB且,EM∥AB,可證DE⊥MA,又由已知可得DE⊥AD,MA∩AD=A,即可證明DE⊥平面MDA.
解答 證明:如圖(2),取AE的中點(diǎn)F,連接DF,BF,設(shè)AD=1,
∵AD=DE=1,∴DF⊥AE,由AD⊥DE,可得AE=$\sqrt{2}$,AF=$\frac{\sqrt{2}}{2}$,DF=$\sqrt{D{A}^{2}-A{F}^{2}}$=$\frac{\sqrt{2}}{2}$,
∵平面ADE⊥平面ABCE.
∴DF⊥BF,
∵AB=2,AE=$\sqrt{2}$,BE=$\sqrt{B{C}^{2}+E{C}^{2}}$=$\sqrt{2}$,
∴由勾股定理可得:∠BEF=90°,
∴BF=$\sqrt{B{E}^{2}+E{F}^{2}}$=$\sqrt{\frac{5}{2}}$,
∴DB=$\sqrt{D{F}^{2}+B{F}^{2}}$=$\sqrt{3}$,
∵DE=1,BE=$\sqrt{2}$.
∴由勾股定理可得:∠BED=90°,即DE⊥BE,
∵EM=AB且,EM∥AB,∴MA∥BE,
∴DE⊥MA,
又由已知可得DE⊥AD,MA∩AD=A,
∴DE⊥平面MDA.
點(diǎn)評(píng) 本題主要考查了直線與平面垂直,折疊問題,考查空間想象能力,計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2} | B. | {1,2} | C. | {1} | D. | {-1,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$a3 | B. | $\frac{{\sqrt{2}}}{12}$a3 | C. | $\frac{{\sqrt{3}}}{12}$a3 | D. | $\frac{{\sqrt{3}}}{6}$a3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{8}$,+∞) | B. | [$\frac{25-8ln2}{16}$,+∞) | C. | [-$\frac{1}{8}$,$\frac{5}{4}$] | D. | (-∞,$\frac{5}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com