分析 利用向量共線、相等的定義,分別進行判斷,即可得出結(jié)論.
解答 解:①若非零向量$\overrightarrow{a}$與$\overrightarrow$互相平行,則$\overrightarrow{a}$與$\overrightarrow$方向相同或相反,正確;
②若$\overrightarrow{AB}$與$\overrightarrow{CD}$共線,則點A,B,C,D共線,不正確,比如平行四邊形的對邊;
③若四邊形ABCD為平行四邊形,則$\overrightarrow{AB}$=$\overrightarrow{DC}$,不正確;
④若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$,正確;
⑤在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,則四邊形ABCD為正方形或菱形,不正確;
⑥$\overrightarrow{a}$與$\overrightarrow$方向相同且|$\overrightarrow{a}$|=|$\overrightarrow$|與$\overrightarrow{a}$=$\overrightarrow$是一致的,正確.
故答案為:①④⑥.
點評 本題考查命題的真假判斷,考查向量共線、相等的定義,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,3,4} | B. | {1,4,6} | C. | {4,5,7,8} | D. | {1,2,3,6} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,1,5) | B. | (-3,-1,5) | C. | (3,-1,-5) | D. | (-3,1,-5) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com