8.角α,β的終邊關于y軸對稱,若α=30°,則β=150°+k•360°(k∈Z)..

分析 角α,β的終邊關于y軸對稱,α=30°,可得β=180°-30°+k•360°(k∈Z).

解答 解:∵角α,β的終邊關于y軸對稱,α=30°,
∴β=180°-30°+k•360°=150°+k•360°(k∈Z).
故答案為:150°+k•360°(k∈Z).

點評 本題考查了終邊相同的角的集合性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖.長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是B1C1,C1D1上的點,G,H分別是BC,CD上的點.
(1)若EF分別是B1C1,C1D1的中點,證明:四邊形BEFD為等腰梯形;
(2)若C1E=CG,C1F=CH,證明:四邊形EFHG為矩形;
(3)該長方體的三個面的對角線長分別為a,b,c,求長方體對角線AC1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{{x}^{2}}{x-1}$的單調(diào)遞減區(qū)間為( 。
A.(0,2)B.(0,1)∪(1,2)C.(0,1)和(1,2)D.(-∞,0)和(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.下列說法中,正確的是①④⑥.(填序號)
①若非零向量$\overrightarrow{a}$與$\overrightarrow$互相平行,則$\overrightarrow{a}$與$\overrightarrow$方向相同或相反;
②若$\overrightarrow{AB}$與$\overrightarrow{CD}$共線,則點A,B,C,D共線;
③若四邊形ABCD 為平行四邊形,則$\overrightarrow{AB}$=$\overrightarrow{CD}$;
④若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$;
⑤在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,則四邊形ABCD為正方形;
⑥$\overrightarrow{a}$與$\overrightarrow$方向相同且|$\overrightarrow{a}$|=|$\overrightarrow$|與$\overrightarrow{a}$=$\overrightarrow$是一致的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在邊長為2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E,F(xiàn)是PA和AB的中點,求PA與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若函數(shù)f(x)的零點為x=2,則函數(shù)y=f(2x-1)的零點為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)已知直線l1:(m+1)x+(m2-2m)y+4=0,l2:2x+(m-2)y-1=0,如果直線l1∥l2,求m的值;
(2)已知直線l1:nx+(2-n)y=3,l2:(n-2)x+(2n+4)y=2,如果這兩條直線相互垂直,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在滿足極坐標和直角坐標互化條件下,極坐標方程ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$經(jīng)過直角坐標系下的伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{\sqrt{3}}{3}y}\end{array}\right.$后,得到的曲線是( 。
A.直線B.橢圓C.雙曲線D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.一個盒子里裝有標號為1,2,3,4,5的5張標簽,不放回地抽取2張標簽,則2張標簽上的數(shù)字為相鄰整數(shù)的概率為$\frac{2}{5}$(用分數(shù)表示)

查看答案和解析>>

同步練習冊答案