分析 (1)由三角函數(shù)公式化簡(jiǎn)可得f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$,由tanα=2可得sin2α=$\frac{4}{5}$,cos2α=-$\frac{3}{5}$,代值計(jì)算可得f(a)的值;
(2)由x∈[$\frac{π}{12}$,$\frac{π}{2}$]結(jié)合三角函數(shù)的性質(zhì)可得f(x)的取值范圍.
解答 解:(1)化簡(jiǎn)可得f(x)=(1+$\frac{1}{tanx}$)sin2x-2sin(x+$\frac{π}{4}$)•sin(x-$\frac{π}{4}$)
=(1+$\frac{cosx}{sinx}$)sin2x-2sin[(x-$\frac{π}{4}$)+$\frac{π}{2}$]•sin(x-$\frac{π}{4}$)
=$\frac{sinx+cosx}{sinx}$sin2x-2cos(x-$\frac{π}{4}$)sin(x-$\frac{π}{4}$)
=sinx(sinx+cosx)-sin(2x-$\frac{π}{2}$)
=sin2x+sinxcosx+cos2x
=$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x+cos2x
=$\frac{1}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$,
∵tanα=2,∴sin2α=2sinαcosα=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$=$\frac{4}{5}$,
同理可得cos2α=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=-$\frac{3}{5}$
∴f(α)=$\frac{1}{2}$sin2α+$\frac{1}{2}$cos2α+$\frac{1}{2}$=$\frac{3}{5}$;
(2)∵x∈[$\frac{π}{12}$,$\frac{π}{2}$],∴2x+$\frac{π}{4}$∈[$\frac{5π}{12}$,$\frac{5π}{4}$],
∴sin(2x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
∴$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)∈[-$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$],
∴$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$∈[0,$\frac{\sqrt{2}+1}{2}$],
∴f(x)的取值范圍為[0,$\frac{\sqrt{2}+1}{2}$].
點(diǎn)評(píng) 本題考查兩角和與差的正弦函數(shù),涉及二倍角公式和三角函數(shù)的值域,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 充分且不必要條件 | ||
C. | 必要且不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com