6.“-$\sqrt{2}$≤k≤$\sqrt{2}$”是“直線x-y+k=0與圓x2+y2=1相交”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 結(jié)合直線與圓相交的條件,利用充分條件和必要條件的定義進(jìn)行判斷.

解答 解:若直線x-y+k=0與圓x2+y2=1相交,則圓心(0,0)到直線的距離d=$\frac{|k|}{\sqrt{2}}$<1,
即|k|<$\sqrt{2}$,
∴-$\sqrt{2}$<k<$\sqrt{2}$,
∴“-$\sqrt{2}$≤k≤$\sqrt{2}$”是“直線x-y+k=0與圓x2+y2=1相交”的必要不條件.
故選:B.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件判斷,以及直線與圓相交的條件,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.過(guò)點(diǎn)(2016,2016),且與直線2x-y-2015=0平行的直線是( 。
A.2x+y-2016=0B.2x-y-2016=0C.2x+y+2016=0D.2x-y+2016=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)設(shè)過(guò)點(diǎn)P(0,-2)的直線l與圓C交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)是偶函數(shù),g(x)是奇函數(shù),且f(x)+g(x)=$\frac{2}{x-2}$.求f(x)與g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)P(0,2)和圓C:x2+y2-6x+4y+4=0.
(1)求以點(diǎn)P為圓心且圓C外切的圓的方程;
(2)且過(guò)點(diǎn)P且與圓C相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),且f′(x)>2f(x)(x∈R),f($\frac{1}{2}$)=e(e為自然對(duì)數(shù)的底數(shù)),則不等式f(lnx)<x2的解集為( 。
A.(0,$\frac{e}{2}$)B.(0,$\sqrt{e}$)C.($\frac{1}{e}$,$\frac{e}{2}$)D.($\frac{e}{2}$,$\sqrt{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.偶函數(shù)f(x)滿足:f(x+2)=f(x)當(dāng)0<x≤1,f(x)=2x,則f(log212)=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,
(1)A1B與B1D1所成的角;
(2)CC1與BD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.函數(shù)f(x)的定義域?yàn)镽,并滿足以下條件:
①對(duì)任意x∈R,有f(x)>0; ②對(duì)任意x、y∈R,有f(xy)=[f(x)]y;  ③f($\frac{1}{3}$)>1
(1)求f(0)的值;
(2)判斷f(x)的在R上單調(diào)性并說(shuō)明理由;
(3)若f(2)=2,且x滿足f($\frac{1}{2}$)≤f(x)≤f(2),求函數(shù)y=2f(2log2x)+$\frac{1}{{f(2{{log}_2}x)}}$的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案