分析 (1)欲證平面EDB⊥平面ABCD,根據(jù)面面垂直的判定定理可知在平面EDB內一直線與平面ABCD垂直,連接AC與BD相交于O,連接EO,而根據(jù)題意可得EO⊥平面ABCD;
(2)在底面作OH⊥BC,垂足為H,根據(jù)OE∥平面PBC可知點E到平面PBC的距離就是點O到平面PBC的距離OH,求出OH即可求出點E到平面PBC的距離.
解答 (1)證明:連接AC與BD相交于O,連接EO,則EO∥PC,
因為PC⊥平面ABCD,
所以EO⊥平面ABCD
又EO?平面EDB,
所以平面EDB⊥平面ABCD;
(2)解:在底面作OH⊥BC,垂足為H,
因為平面PCB⊥平面ABCD,
所以OH⊥平面PCB,
又因為OE∥PC,
所以OE∥平面PBC,
所以點E到平面PBC的距離就是點O到平面PBC的距離OH,解得OH=$\frac{\sqrt{3}}{4}a$.
點評 本小題主要考查平面與平面垂直的判定,以及點、線、面間的距離計算等有關知識,考查空間想象能力、運算能力和推理論證能力,考查轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$ | B. | $[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$ | ||
C. | $[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$ | D. | $[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com