20.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且b(tanA+tanB)=2ctanB.
(1)求角A;
(2)若a=2$\sqrt{7}$,c=2,求△ABC的面積S.

分析 (1)由正弦定理和三角函數(shù)公式化簡(jiǎn)已知式子可得cosA=$\frac{1}{2}$,可得A=$\frac{π}{3}$;
(2)由正弦定理可得sinC,再由同角三角函數(shù)基本關(guān)系可得cosC,再由兩角和的正弦公式可得sinB,代入三角形的面積公式計(jì)算可得.

解答 解:(1)∵在△ABC中b(tanA+tanB)=2ctanB,
∴由正弦定理可得sinB(tanA+tanB)=2sinCtanB,
∴sinB(tanA+tanB)=2sinC•$\frac{sinB}{cosB}$,
∴cosB(tanA+tanB)=2sinC,
∴cosB($\frac{sinA}{cosA}$+$\frac{sinB}{cosB}$)=2sinC,
∴cosB•$\frac{sinAcosB+cosAsinB}{cosAcosB}$=2sinC,
∴cosB•$\frac{sin(A+B)}{cosAcosB}$=$\frac{sinC}{cosA}$=2sinC,
解得cosA=$\frac{1}{2}$,A=$\frac{π}{3}$;
(2)∵a=2$\sqrt{7}$,c=2,A=$\frac{π}{3}$,∴C<A,
∴由正弦定理可得sinC=$\frac{csinA}{a}$=$\frac{2×\frac{\sqrt{3}}{2}}{2\sqrt{7}}$=$\frac{\sqrt{21}}{14}$,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{5\sqrt{7}}{14}$,
∴sinB=sin(A+C)=sinAcosC+cosAsinC
=$\frac{\sqrt{3}}{2}×\frac{5\sqrt{7}}{14}$+$\frac{1}{2}×\frac{\sqrt{21}}{14}$=$\frac{3\sqrt{21}}{14}$
∴△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}×2\sqrt{7}×2×\frac{3\sqrt{21}}{14}$=3$\sqrt{3}$

點(diǎn)評(píng) 本題考查正余弦定理解三角形,涉及同角三角函數(shù)基本關(guān)系和三角形的面積公式,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在8件獲獎(jiǎng)作品中,有3件一等獎(jiǎng),有5件二等獎(jiǎng),從這8件作品中任取3件.
(1)求取出的3件作品中,一等獎(jiǎng)多于二等獎(jiǎng)的概率;
(2)設(shè)X為取出的3件作品中一等獎(jiǎng)的件數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓P與直線x=-1相切,且經(jīng)過(1,0),設(shè)點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點(diǎn)A的坐標(biāo)為(2,1),點(diǎn)B在曲線C上運(yùn)動(dòng),求線段AB中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=21n(x+1)-1nax在其定義域內(nèi)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值集合為( 。
A.|4|B.(-∞,4]C.(-∞,0)D.(-∞,0)∪{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-1|+|x+2|
(Ⅰ)作出函數(shù)f(x)的圖象(不要求寫作法);
(Ⅱ)若不等式9a2+1≥|a|f(x)對(duì)a∈(-∞,0)∪(0,+∞)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)A(0,1),B(3,2),C(a,0),若A,B,C三點(diǎn)共線,則a=(  )
A.$\frac{1}{2}$B.-1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“?x0∈(0,+∞),x${\;}_{0}^{2}$=x0-1”的否定是( 。
A.?x∈(0,+∞),x2≠x-1B.?x∈(0,+∞),x2=x-1
C.?x0∉(0,+∞),x${\;}_{0}^{2}$≠x0-1D.?x0∈(0,+∞),x${\;}_{0}^{2}$≠x0-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,若A=30°,a=2,b=2$\sqrt{3}$,則此三角形解的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在數(shù)列{an}(n=1,2,3,…)中,a1=4,且3,an,an+1成等差數(shù)列;
(1)設(shè)bn=an-3,證明:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)cn=log2(2an-6),記數(shù)列{$\frac{1}{{c}_{2n-1}{c}_{2n+1}}$}的前n項(xiàng)和為Tn,證明:Tn$<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案