下列選項(xiàng)對(duì)應(yīng)的圖象表示的函數(shù)f(x),滿足f(
1
4
)>f(3)>f(2)的只可能是( 。
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)所給的不等式,推測(cè)出函數(shù)圖象可能的單調(diào)性,先排除某些項(xiàng),由此判斷出正確選項(xiàng).
解答: 解:由所給的不等式可得,函數(shù)是先減后增型的,故排除B,C,
由于A的圖象關(guān)于x=1對(duì)稱,左減右增,有f(
1
4
)=f(
7
4
)<f(3),這與f(
1
4
)>f(3)相矛盾,故排除A
D的圖象在(0,1)上遞減且遞減較快,在(1,+∞)遞增,遞增較慢,可能滿足f(
1
4
)>f(3)>f(2),
故選:D.
點(diǎn)評(píng):本題考查函數(shù)圖象的變化與函數(shù)值變化的對(duì)應(yīng)關(guān)系,熟練掌握單調(diào)性變化與圖象變化的對(duì)應(yīng)是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

利用秦九韶算法求當(dāng)x=2時(shí),f(x)=1+2x+3x2+…+6x5的值,下列說法正確的是(  )
A、先求1+2×2
B、先求6×2+5,第二步求2×(6×2+5)+4
C、f(2)=1+2×2+3×22+4×23+5×24+6×25直接運(yùn)算求解
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐E-ABCD中,底面ABCD為梯形,AB∥CD,2AB=3CD,M為AE中點(diǎn),設(shè)E-ABCD的體積為V,那么三棱錐M-EBC的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出數(shù)陣如下,則該數(shù)陣的行列式的值為(  )
A、495B、900
C、1000D、1100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1).
(1)設(shè)a=2,函數(shù)g(x)的定義域?yàn)閇-63,-3],求g(x)的最值;
(2)求使f(x)>g(x)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)•ex的定義域?yàn)閇-2,t],設(shè)f(-2)=m,f(t)=n.
(1)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(2)求證:m<n;
(3)求證:對(duì)于任意的t>-2,總存在x0∈(-2,t),滿足
f′(x0)
ex0
=
2
3
(t-1)2;又若方程
f′(x0)
ex0
=
2
3
(t-1)2;在(-2,t)上有唯一解,請(qǐng)確定t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)圓錐的側(cè)面展開圖是一個(gè)半徑為2,圓心角為60°的扇形,求:
(1)圓錐的全面積和體積;
(2)一質(zhì)點(diǎn)從圓錐底面圓一點(diǎn)A出發(fā),繞圓錐側(cè)面運(yùn)動(dòng)在回到A點(diǎn)所經(jīng)過的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
2
π
=sinx,x∈R的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線方程為y=±
1
2
x,則離心率e為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案